Cheatography

About unit testing

Production code cleanliness cannot be
greater than test code cleanliness.

Test code cleanliness mainly depends on its
readability.

Unit tests can be viewed as specifications of
the system.

FIRST principles

Fast : tests should be fast. If they're slow,
they won't be run.

Independant : tests should not depend on
each other, otherwise their result will be
hard to analyze.

Repeatable : tests should berepeatable in
any environnement. Their execution should
not depend on the availability of a specific
environnement.

Self-Validating : tests should either pass or
fail. Evaluating their result mustn't be
subjective.

Timely : tests should be written just before
the production code is written. If they're
written after, they will be difficult to write.

Test Driven Development

Test Driven Developement is a great way to
write unit test in a timely manner and
achieve a good mutation score.

1st rule : you may not write production code
until you have written a failing unit test.

2nd rule : you may not write more of a unit
test than is sufficient to fail, and not
compiling is failing.

3rd rule : you may not write more production
code than is sufficient to pass the currently
failing test.

Obvious implementation : just write it and
see if the tests pass.

Triangulate : drive implementation by using
a set of several examples.

By Alexandre Rosano
cheatography.com/alexandre-
rosano/

Unit testing Cheat Sheet
by Alexandre Rosano via cheatography.com/193992/cs/40417/

General rules

One test equals one behavior.

Write tests at the uppermost level of code.
Changing implementation details should not
break a test, only a new behavioral need (or
a bug!) should.

Use contract testing to write accurate
assertions and reuse them between several
implementations tests.

Name tests in a fluent way or use the
pattern "Given - When - Then"

The body of test methods should clearly
show the pattern "Given - When - Then".

"Hide wires" : boilerplate or technical code
irrelevent to understanding a test should be
hidden.

Hide irrelevant functional data. It is noise
that lowers the test understandability.

Abstract magic values by giving them
meaningful names. It makes tests more
understandable.

Do not duplicate production logic. If the
logic has a bug, it will be duplicated, making
the test useless.

Do not use conditional logic. It lowers the
readability of the test. Split the test instead.

Assertions

Prefer assertions based on states over
assertions based on behavior. The later are
less maintainable as they couple test code
to production code.

Use an expressive assertion framework.
Assertions should be understable quickly.

Only make assertions regarding current
case. Tests should only fail regarding their
case expectations.

Do not aggregate assertions, as the cause
of a failing test would be hard to spot.

Assert exceptions as they also are specif-
ications of the system.

Test doubles

Dummy : fixed values not used by tests.
Stub : fixed values used by tests.

Fake : dynamic values used by tests.

Spy : fixed values used by test ; provides
data to inspect its behavior.

Mock : fixed values used by test ; provides
methods to inspect its behavior.

Only use tests doubles when necessary. Do
not over use them as it will lower the
readability and maintainability of the tests.

Use "manually created" fakes most of the
time. They are reusable, decouple test code
from production code and discourage the
use of assertions based on behavior.

Testing approaches

Use property-based testing to spot values
that don't produce expected output.

Property-based testing and traditional
example-based testing are complementary.

Use "golden master testing” to take a
snapshot of legacy code outputs before
refactoring it.

Parameterized tests can help dealing with
edge values, by using a set of values
covering the edges.

When fixing a bug, start by writing a test
that shows it exists, then fix the bug.

Do not rely on code coverage alone : it only
shows if production code is executed by the
tests.

Use mutation testing over code coverage to
evaluate unit tests effectiveness.

Mutation testing also helps having a minimal
production code, less production code

meaning less possible mutations.

Credits

Test doubles definitions inspired from this
post by Robert C. Martin

Published 6th October, 2023.
Last updated 5th August, 2024.
Page 1 of 1.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com


http://www.cheatography.com/
http://www.cheatography.com/alexandre-rosano/
http://www.cheatography.com/alexandre-rosano/cheat-sheets/unit-testing
https://blog.cleancoder.com/uncle-bob/2014/05/14/TheLittleMocker.html
http://www.cheatography.com/alexandre-rosano/
https://apollopad.com

	Unit testing Cheat Sheet - Page 1
	About unit testing
	General rules
	Assertions
	FIRST principles
	Testing approaches
	Test Driven Develo­pment
	Test doubles
	Metrics
	Credits


