
Unit testing Cheat Sheet
by Alexandre Rosano via cheatography.com/193992/cs/40417/

About unit testingAbout unit testing

Production code cleanliness cannot be
greater than test code cleanlinesstest code cleanliness .

Test code cleanliness mainly depends on its
readabilityreadability.

Unit tests can be viewed as specificationsspecifications of
the system.

FIRST principlesFIRST principles

FFast : tests should be fastfast. If they're slow,
they won't be run.

IIndependant : tests should not depend onnot depend on
each othereach other, otherwise their result will be
hard to analyze.

RRepeatable : tests should be repeatable inrepeatable in
any environnementany environnement. Their execution should
not depend on the availability of a specific
environnement.

SSelf-Validating : tests should either pass oreither pass or
failfail. Evaluating their result mustn't be
subjective.

TTimely : tests should be written just beforejust before
the production codeproduction code is written. If they're
written after, they will be difficult to write.

Test Driven DevelopmentTest Driven Development

Test Driven DevelopementTest Driven Developement is a great way to
write unit test in a timely mannertimely manner and
achieve a good mutation scoremutation score.

1st rule1st rule : you may not write production code
until you have written a failing unit test.

2nd rule2nd rule : you may not write more of a unit
test than is sufficient to fail, and not
compiling is failing.

3rd rule3rd rule : you may not write more production
code than is sufficient to pass the currently
failing test.

Obvious implementationObvious implementation : just write itwrite it and
see if the tests pass.

Triangulate Triangulate : drivedrive implementation by using
a set of several examplesseveral examples.

General rulesGeneral rules

One test equals one behaviorOne test equals one behavior.

Write tests at the uppermost leveluppermost level of code.
Changing implementation details should not
break a test, only a new behavioral neednew behavioral need (or
a bug!) should.

Use contract testingcontract testing to write accurateaccurate
assertionsassertions and reuse themreuse them between several
implementations tests.

NameName tests in a fluent wayfluent way or use the
pattern "Given - When - Then"pattern "Given - When - Then"

The bodybody of test methods should clearly
show the pattern "Given - When - Then"pattern "Given - When - Then" .

"Hide wires""Hide wires" : boilerplateboilerplate or technicaltechnical code
irrelevent to understanding a test should be
hiddenhidden.

Hide irrelevant functional dataHide irrelevant functional data. It is noisenoise
that lowers the test understandability.

Abstract magic valuesmagic values by giving them
meaningful namesmeaningful names. It makes tests more
understandable.

Do notnot duplicate production logicproduction logic. If the
logic has a bug, it will be duplicated, making
the test useless.

Do notnot use conditional logicconditional logic. It lowers the
readability of the test. SplitSplit the test instead.

Test doublesTest doubles

DummyDummy : fixed valuesfixed values not usednot used by tests.

Stub Stub : fixed valuesfixed values usedused by tests.

Fake Fake : dynamic valuesdynamic values usedused by tests.

Spy Spy : fixed valuesfixed values usedused by test ; provides
datadata to inspect its behaviorinspect its behavior.

Mock Mock : fixed valuesfixed values usedused by test ; provides
methodsmethods to inspect its behaviorinspect its behavior.

Only use tests doubles when necessarywhen necessary. Do
not over use them as it will lower thelower the
readabilityreadability and maintainabilitymaintainability of the tests.

Use "manually created""manually created" fakesfakes most of themost of the
timetime. They are reusablereusable, decoupledecouple test code
from production code and discouragediscourage the
use of assertions based on behaviorbased on behavior.

AssertionsAssertions

Prefer assertions based on statesassertions based on states over
assertions based on behavior. The later are
less maintainable as they couplecouple test code
to production code.

Use an expressiveexpressive assertion frameworkframework.
Assertions should be understable quickly.

Only make assertions regarding currentregarding current
casecase. Tests should only fail regarding their
case expectations.

Do notnot aggregateaggregate assertions, as the cause
of a failing test would be hard to spot.

Assert exceptionsexceptions as they also are specif‐specif‐
icationsications of the system.

Testing approachesTesting approaches

Use property-based testingproperty-based testing to spot valuesspot values
that don't produce expected output.

Property-based testingProperty-based testing and traditional
example-based testingexample-based testing are complementarycomplementary.

Use "golden master testing""golden master testing" to take a
snapshot of legacy codelegacy code outputs before
refactoringrefactoring it.

Parameterized testsParameterized tests can help dealing with
edge valuesedge values, by using a set of values
covering the edges.

When fixing a bugfixing a bug, start by writing a teststart by writing a test
that shows it exists, then fix the bug.

MetricsMetrics

Do not rely on code coverage aloneDo not rely on code coverage alone : it only
shows if production code is executed by the
tests.

Use mutation testingmutation testing over code coveragecode coverage to
evaluate unit tests effectiveness.

Mutation testingMutation testing also helps having a minimalminimal
production codeproduction code, less production code
meaning less possible mutations.

CreditsCredits

Test doubles definitions inspired from this
post by Robert C. Martin

By Alexandre RosanoAlexandre Rosano
cheatography.com/alexandre-
rosano/

Published 6th October, 2023.
Last updated 5th August, 2024.
Page 1 of 1.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alexandre-rosano/
http://www.cheatography.com/alexandre-rosano/cheat-sheets/unit-testing
https://blog.cleancoder.com/uncle-bob/2014/05/14/TheLittleMocker.html
http://www.cheatography.com/alexandre-rosano/
https://readable.com

	Unit testing Cheat Sheet - Page 1
	About unit testing
	General rules
	Assertions
	FIRST principles
	Testing approaches
	Test Driven Development
	Test doubles
	Metrics
	Credits

