
cs2340_exam2 Cheat Sheet
by akschool via cheatography.com/144347/cs/30976/

Test-Driven DevelopmentTest-Driven Development

Failure vs Fault vs Error

 Failure Observable
incorrect
behavior, ex.
a+b vs a*b

 Fault (bug): Related to the
code. Failure
IFF fault

 Error Cause of a fault.
Usually human
error (conce‐
ptual, typo, etc.)

Verifi‐
cation

Testing (test cases), Static
Verification (all possible inputs),
Inspection/review/walkthrough,
Formal proof

Granul‐
arity:

Unit Testing -> Integration
Testing -> System testing ->
Acceptance testing ->
Regression testing

within
org

Developers
testing ->
Alpha
testing

outside org: Beta
testing ->
Product release

what is
tdd

Write tests -
> write
functional
code ->
refactor

"Make it Fail,
Make it Work,
Make it Better"

Why
TDD

Provides incremental specifica‐
tion, avoid regression errors

Structure
of tests

Set fixture, invoke, check,
cleanup

Teamwork ConsiderationsTeamwork Considerations

People are most important asset

Critical
factors in
people
management

Consistency, respect,
inclusion

Factors
influencing
team
working

Group composition, Group
cohesiveness, Group
communications, Group
organization

 Group
compo
sition

Task-oriented,
self-oriented,
interaction-ori‐
ented

Hitchhiker: Take credit for team's work
w/o contributing

Couch
potato

Willing to work, but drag
their feet

Absorbing leads to couch potatoes / hitchh‐
ikers

- Mirroring reflects consequences onto
hitchhikers

Sequence RobustnessSequence Robustness

GUI
prototype
-> Code

Dynamic Static

 Use Case
Model ->
Robustness
diagram ->
Sequence
Diagram

Domain
Model ->
Class
Diagram

Robustness diagrams bridge the "what/h‐
ow" gap

Notation

 Boundary Class a user
interface or
API class to
external
system

 Entity Class a class from
the domain
model

Sequence Robustness (cont)Sequence Robustness (cont)

 Controller
Class

a class repres‐
enting business
logic or logical
software function

Valid
relati‐
onships

Nouns<->V‐
erbs,
Verbs<-
>Verbs

Nouns!->nouns

 valid ex: Actor->Boundary,
Boundary<->Controller, entity->c‐
ontroller

 invalid ex: actor->controller/‐
entity, boundary->entity, entity<-
>entity, boundary<->boundary

Robustness analysis guidelines:

 Make a boundary object for each
screen & name them well

 Usually not real controller
objects, but rather logical
software functions

 Direction of arrows not important

 Boundary/entity classes -> object
instances, controllers ->
messages

Sequence Diagrams

 SD shows
how objects
within
system
interact

SSD shows how
actors interact w
system

By akschoolakschool
cheatography.com/akschool/

Not published yet.
Last updated 2nd March, 2022.
Page 1 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/akschool/
http://www.cheatography.com/akschool/cheat-sheets/cs2340-exam2
http://www.cheatography.com/akschool/
https://readable.com

cs2340_exam2 Cheat Sheet
by akschool via cheatography.com/144347/cs/30976/

Design Class DiagramsDesign Class Diagrams

Domain model shows real-world concepts,
DCD shows software entities

Class attributes

 Full
format

visibility name : type multip‐
licity = default {property-string}

 Visibility
marks

+ (public), - (private), # (prote‐
cted)

 Attributes assumed private if no visibility is
given

 Operations assumed public if no visibility is
given

Attribution text vs association line

 [IMAGE HERE][IMAGE HERE]

 Guideline Use the attribute text notation
for data type objects and the
association line notation for
others

Two ways to show collection attributes

 [IMAGE HERE][IMAGE HERE]

Note symbol: can represent UML note or
comment, UML constraint, or Method body

Operations and Methods:

 Operation
syntax,
UML1:

visibility name (parameter-list)
: return-type = default {prope‐
rty-string}

 Operations are usually assumed public if
no visibility is shown

 Operations to access attributes are often
excluded

UML keywords:

Design Class Diagrams (cont)Design Class Diagrams (cont)

 «actor»: classifier is an actor, ex: in
class diagram, above
classifier name

 «interface» classifier is an interface, ex:
in class diagram, above
classifier name

 {abstract} abstract element; can't be
instantiated, ex: in class
diagrams, after classifier
name or operation name

 {ordered} a set of objects have some
imposed order, ex: in class
diagrams, at an association
end

Dependency:

 [IMAGE HERE][IMAGE HERE]

 dependency
labels are
optional

ex: <<call>> and <<crea‐
te>>

Interfaces, Inheritance, Abstract class,
Composition, Aggregation

 [IMAGE HERE][IMAGE HERE]

 Aggregation “has-part” association relati‐
onship, exists w/o parent

 Compos‐
ition

whole-part association
relationship, needs parent
to exist

Constraints (3 ways)

 [IMAGE HERE][IMAGE HERE]

Utility class

 [CODE HERE][CODE HERE]

Mapping designs to codeMapping designs to code

Class-Res‐
ponsibility-‐
Collab‐
oration
(CRC)

Brainstorming tool used in
OOD. CRC cards are
usually created from index
cards.

Mapping designs to code (cont)Mapping designs to code (cont)

CRUFT useless, redundant, or poorly
written code

Don’t
Repeat
Yourself
(DRY)

Every piece of knowledge must
have a single, unambiguous,
authoritative representation
within a system

Separation of concerns (SOC)

 Design principle for separating a
computer

 Concern is a set of information
that affects the code of a
computer program

You Aren’t Gonna Need It (YAGNI)

 A programmer should not add
functionality until deemed
necessary

 "do the simplest thing that could
possibly work”

 Must be used in combination
with several other practices,
such as continuous refactoring,
unit testing and continuous
integration

By akschoolakschool
cheatography.com/akschool/

Not published yet.
Last updated 2nd March, 2022.
Page 2 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/akschool/
http://www.cheatography.com/akschool/cheat-sheets/cs2340-exam2
http://www.cheatography.com/akschool/
https://readable.com

cs2340_exam2 Cheat Sheet
by akschool via cheatography.com/144347/cs/30976/

Mapping designs to code (cont)Mapping designs to code (cont)

Collection
Classes:

One-to-
many
relati‐
onships
are
common.

E.g., a Sale must
maintain visibility
to a group of many
SalesLineItem
instances

Object visibilityObject visibility

Visibility the ability of one object to see or
have reference to another

Attribute visibility: B is an attribute of A

 Relatively permanent visibility

 Common form of visibility in OO
systems

Parameter visibility: B is a parameter of a
method in A

 Relatively temporary visibility

 Common to transform parameter
visibility into attribute visibility

Local visibility: B is a (non-parameter) local
object in a method of A

 Relatively temporary visibility

 Two
methods:

- Create a new local
instance and assign
it to a local variable.

 - Assign the
returning object from
a method invocation
to a local variable.

Global visibility: B is globally visible

Object visibility (cont)Object visibility (cont)

 Preferred method to achieve global
visibility is to use the Singleton pattern.

Code smellsCode smells

code
smell

quick-to-spot surface indication that
something is wrong with your code

usually found during examining & refact‐
oring

usually caused by rushed design and a
disregard for technical debt

 technical
debt

the amount of work you
create when you try to
save time upfront

 right way vs fast way

Types

 Bloaters long method, large
class, long parameter
list (>=3,4), data clumps
(ex: RGB always
together)

 Object-
Orien‐
tation
Abusers

Switch statements,
Refused Bequest
(inherit methods but
unused or redefined)

 Change Preventers

Code smells (cont)Code smells (cont)

 Divergent Change (many
changes to single class from
copy-paste)

 Shotgun surgery (many small
changes to many classes from
too much coupling, too little
cohesion)

 Dispen
sables

Lazy class (doesn't do enough),
Data class (only fields + getter‐
s/setters), Duplicated code

 Couplers

 Feature
envy

A method that seems
more interested in a
class other than the
one it is in

 Inappr‐
opriate
intimacy

Classes know too
much about each
other's private parts
(tightly coupled)

 Middle
man:

class performs one
action delegating work
to other class

By akschoolakschool
cheatography.com/akschool/

Not published yet.
Last updated 2nd March, 2022.
Page 3 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/akschool/
http://www.cheatography.com/akschool/cheat-sheets/cs2340-exam2
http://www.cheatography.com/akschool/
https://readable.com

cs2340_exam2 Cheat Sheet
by akschool via cheatography.com/144347/cs/30976/

Responsibility-driven designResponsibility-driven design

respon‐
sibility

Obligation to perform a task or
know information

Behavior (doing) vs data (knowing)

Methods
vs
respon‐
sibilities

methods fulfill responsibilities

 Responsibilities are implem‐
ented by means of methods that
either act alone or collaborate
with other methods and objects

GRASP: [spell out]GRASP: [spell out]

Who is responsible for creating a new
instance of a class?

 Rules: Assign class B to create class A if:

 B contains or aggregates A

 B records A

 B closely uses A

 B has the initializing data for A
(B is an Expert with respect to
creating A)

 If >1 option, prefer aggregation

1. Creator -> Low coupling:

 Guideline
1

A composite object is an
excellent candidate to make its
parts

 Guideline
2

Look at the class that has the
initializing data

GRASP: [spell out] (cont)GRASP: [spell out] (cont)

 E.g., a Payment
instance must be
initialized with the
Sale total. Hence,
Sale is a candidate
creator of Payment

 Guideline
3

In case of complex
rules consider
delegation of
creation to a helper
class

2. Information Expert -> Low coupling, high
cohesion, reduce feature envy

 Assign a responsibility to the
class that has the information
necessary to fulfill the respon‐
sibility

 Many “partial” information
experts may collaborate in a
task

3. Low
Coupling

Assign responsibilities so that
coupling remains as low as
possible.

 High to low:

 ***Content
coupling: one class
modifies another
(branch into middle
of routine, modifies
code)

 **Common
coupling: share
common (global)
data

GRASP: [spell out] (cont)GRASP: [spell out] (cont)

 **Control coupling: use a method
parameter (by passing some kind of flag)
to control a different method

 Stamp/Data coupling: passing complex
data or structures between modules(& use
primitives when possible)

 Uncoupled: no relationship

 *** DO NOT DO THIS!!!

 ** TRY HARD NOT TO DO THIS!

 Common forms of coupling:

 TypeX has an attribute that refers to
TypeY

 TypeX calls on services of TypeY

 TypeX has a method that refers to TypeY

 TypeX is a subclass of TypeY

 TypeY is an interface and TypeX
implements it

4. Controller

 UI objects should not have responsibility
for fulfilling system events

By akschoolakschool
cheatography.com/akschool/

Not published yet.
Last updated 2nd March, 2022.
Page 4 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/akschool/
http://www.cheatography.com/akschool/cheat-sheets/cs2340-exam2
http://www.cheatography.com/akschool/
https://readable.com

cs2340_exam2 Cheat Sheet
by akschool via cheatography.com/144347/cs/30976/

GRASP: [spell out] (cont)GRASP: [spell out] (cont)

 Delegates work to other objects &
coordinate / control the activity

 Assign responsibility to a class that:

 Represents the overall System (Façade
Controller)

 Represents a Use Case scenario where
the event occurs (<usecase name>H‐
andler, <ucn>Coordinator, <ucn>Session)

5. High Cohesion: Objects should not do
many unrelated things

 High to low

 ***Coincidental: unrelated functions

 Logical: multiple logic sections

 Temporal: related by phases of an
operation

 Procedural: required ordering of tasks
(addIngredients, mix, bake)

 Communicational: operates on same data
set

 Functional: all essential elements for a
single function are in same module
(takeOff, fly, land)

GRASP: [spell out] (cont)GRASP: [spell out] (cont)

 *** DO NOT DO THIS
UNLESS UNAVOIDABLE!!

Refactoring:

 Goal: Keep program readable, understan‐
dable, and maintainable

 Preserve
behavior by
using tests

Ex: rename, extract
method, move method,
replace temp w query

SOLID: [spell out]SOLID: [spell out]

S: Single Responsibility Principle

 Each class should have a single overriding
responsibility (High Cohesion) -> many
small classes > one big class

 Each class has one reason why it should
change

O: Open/Closed Principle

 Objects are open for extension but closed
for modification

 Extension via inheritance, polymorphism

L: Liskov Substitution Principle

 Subclasses should be substitutable for their
base classes

 class that implements an interface must be
able to substitute any reference throughout
the code that implements the same
interface

I: Interface Segregation Principle

 Use several small interfaces vs one larger
multipurpose one

SOLID: [spell out] (cont)SOLID: [spell out] (cont)

 Don’t make clients depend on
interfaces they don’t use (Athlete ->
SwimmingAthlete, JumpingAthlete)

D: Dependency Inversion Principle

 High-level modules should not
depend on low-level modules. Both
should depend on abstractions.

 Abstractions should not depend on
details. Details should depend on
abstractions (writeJava; writeJava‐
Script -> develop() calls writeJava,
writeJavaScript)

ISP
vs
LSP

ISP: parent <->
client

LSP: parent <->
child

By akschoolakschool
cheatography.com/akschool/

Not published yet.
Last updated 2nd March, 2022.
Page 5 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/akschool/
http://www.cheatography.com/akschool/cheat-sheets/cs2340-exam2
http://www.cheatography.com/akschool/
https://readable.com

	cs2340_exam2 Cheat Sheet - Page 1
	Test-Driven Development
	Teamwork Considerations
	Sequence Robustness

	cs2340_exam2 Cheat Sheet - Page 2
	Design Class Diagrams
	Mapping designs to code

	cs2340_exam2 Cheat Sheet - Page 3
	Code smells
	Object visibility

	cs2340_exam2 Cheat Sheet - Page 4
	Responsibility-driven design
	GRASP: [spell out]

	cs2340_exam2 Cheat Sheet - Page 5
	SOLID: [spell out]

