
Ruby on rails interview Questions Cheat Sheet
by Akshaya (akki_1) via cheatography.com/208452/cs/44671/

What is Ruby on rails?What is Ruby on rails?

It is a Open-source web application
framework written in ruby

* It is designed to make web applications
easier by assuming what developers need
to get started.

* It follows the model-view-controller (MVC)
architecture pattern.

MVC ArchitectureMVC Architecture

In Ruby, MVC (Model-View-Controller) is a
pattern used to organize code, especially in
web applications. It separates the applic‐
ation into three parts:

ModelModel: Handles data and business logic.
For example, it communicates with the
database.

ViewView: Manages the display. It’s what users
see on the screen, like HTML or templates.

ControllerController: Connects Model and View. It
receives user input, tells the Model to
update or retrieve data, and then decides
what View to show.

FlowFlow: User -> Controller -> Model ->
Controller -> View -> User.

In Ruby on Rails, this pattern helps keep
code clean and organized, making it easier
to manage large applications.

MVC meanMVC mean

MVC stands for Model-View-Controller. It’s
a software architectural pattern commonly
used in the development of user interfaces,
particularly for web applications.

MigrationMigration

It is a feature in rails that allow developers
to manage & modify database schema over
time.

* They are Ruby files used to make
changes to the database, like creating
tables or adding/removing columns.

* Migrations make it easier to track and
version change, rollback changes if
necessary

Why Migrations are importantWhy Migrations are important

Migrations are important because they help
track changes, keep the database schema
consistent, and allow rolling back changes if
needed.

Rails controller & purposeRails controller & purpose

Rails Controller Controller handles requests and sends
responses. It processes user actions,
interacts with models to fetch or save data,
and renders views or returns data (e.g.,
JSON).

* Controllers are mapped to URLs using
routes. They act as the middle layer
between the user and the app's data or
views.

Ex: User visits /articles. router directs
request to ArticlesController#index,
controller feteches all articles with Articl‐
e.all, controller sends data to view /returns a
response.

Active RecordActive Record

Active Record is the ORM (Object-Rela‐
tional Mapping) in Rails. It connects Ruby
classes to database tables, making it easy
to work with the database without writing
SQL. Developers can use Ruby methods to
interact with the data.

How active record works in database?How active record works in database?

Maps models to database tables (e.g., User → users).

Provides methods for CRUD operations create, find,
update, destroy

Ex: create(User.createcreate(name: " "), find(User.findfind
update(user.updateupdate(name: " "), destroy(user.destroydestroy

Uses migrations to manage the database schema.

Handles relationships with associations (e.g., has_many,
belongs_to).

Allows queries using Ruby methods instead of SQL.
.where("age > ?", 18).order(:name)

ORM(Object-Relational-Mapping)ORM(Object-Relational-Mapping)

It allows developers to interact with
database using ruby code instead of writing
raw SQL queries.

* In Rails, the ORM is Active Record, which
maps models to database tables and
provides methods for performing CRUD
operations (Create, Read, Update, Delete).

GemfileGemfile

It is used to manage the dependencies of a
Rails application. It specifies which gems
(libraries) the application depends on and
their versions.

Some Gem filesSome Gem files

Authentication & AuthorizationAuthentication & Authorization: : Devise

* It handles user authentication(login,
signup, password recover)

Database & ORMDatabase & ORM: bcrypt

* Handles password encryption when using
has_secure_password

FrontendFrontend: Bootstrap

* Add bootstrap style for responsive web
design.

KamineriKamineri: Adds pagination to your applic‐
ation.

By AkshayaAkshaya (akki_1)
cheatography.com/akki-1/

Published 17th November, 2024.
Last updated 17th November, 2024.
Page 1 of 3.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/akki-1/
http://www.cheatography.com/akki-1/cheat-sheets/ruby-on-rails-interview-questions
http://www.cheatography.com/akki-1/
https://apollopad.com

Ruby on rails interview Questions Cheat Sheet
by Akshaya (akki_1) via cheatography.com/208452/cs/44671/

CallbacksCallbacks

Callbacks are methods that get triggered at
certain points in the lifecycle of an object
(like before saving, after updating, etc.).

Common callbacks include:
before_savebefore_save: Runs before a record is saved
(on both create and update). Often used for
tasks like formatting data.

after_saveafter_save: Runs after a record is saved.
Useful for tasks like logging or sending
notifications.

before_validationbefore_validation: Runs before validation.
Can be used to modify attributes before
validation checks.

after_createafter_create: Runs after a new record is
created., not on updates. Often used to
trigger actions like sending welcome emails.

They are used to execute code at specific
points to maintain data consistency or add
additional logic.

RoutingRouting

Routing connects incoming requests (URLs)
to the specific controller actions. Rails uses
a routes.rb file to define routes.

A route can be defined as: get 'articles', to:
'articles#index'

- a GET request to /articles will be handled
by the index action in the ArticlesController.

- Rails has RESTful routes, which map
standard URL patterns to controller actions
(e.g., index, show, create, etc.) based on
resources:

resources :articles

- This generates routes for all CRUD
actions (index, show, new, edit, create,
update, destroy).

Routes ensure incoming requests are
directed to the right controllers and actions,
organizing the application's structure effect‐
ively.

RESTful ArchitectureRESTful Architecture

RESTful architecture organizes web applic‐
ations around resources and standardizes
how they are accessed using HTTP verbs.

Resources: Treats entities (e.g., articles,
users) as resources.

HTTP Verbs: Maps actions to HTTP
methods:

GETGET: Retrieve data. POSTPOST: Create data.
PUT/PATCHPUT/PATCH: Update data. DELETEDELETE:
Remove data.

RESTful Routes in Rails: Using resources,
Rails generates routes for CRUD operat‐
ions.

resources :articles

GET /articles → ArticlesController#index
(List all articles)

POST /articles → ArticlesController#create
(Create a new article).

GET /articles/:id → ArticlesController#show
(Show a specific article).

PATCH/PUT /articles/:id → ArticlesControl‐
ler#update (Update an article).

DELETE /articles/:id → ArticlesController‐
#destroy (Delete an article).

Associations & typesAssociations & types

Associations Associations define relationships between
models. They allow models to connect and
share data easily.

TypesTypes

has_manyhas_many: Defines one-to-many relati‐
onship. A model "has many" other models.
Ex: User can have many Posts

belongs_tobelongs_to: Defines the opposite of
has_many. A model "belongs to" another
model.
Ex: Post belongs to User

Associations & types (cont)Associations & types (cont)

has_onehas_one: Defines a one-to-one relationship.
A model "has one" other model. {{nl}Ex:
User has one Profile

has_and_belongs_to_manyhas_and_belongs_to_many:Defines a
many-to-many relationship without a join
model.
Ex: Student can have many Courses, and a
Course can have many Students.

has_many :throughhas_many :through: Defines a many-to-
many relationship with a join model.
Ex: Doctor has many Patients through
Appointments.

Polymorphic associationPolymorphic association

1 table associated with many tables

Ex: Post have likes, we use likes in post
and comment

Active Record Vs Active ModelActive Record Vs Active Model

Active RecordActive Record is an ORM framework in
Rails that connects classes to database
tables, enabling database operations
through Ruby objects

Active ModelActive Model provides modules for building
custom models without a database, offering
features like validations, serialization, and
callbacks.

How do you handle errors?How do you handle errors?

Error handling in Rails is important for
providing a smooth user experience and
ensuring that users are properly informed
when something goes wrong.

PartialsPartials

Partials in Rails are reusable pieces of view
code that can be shared across multiple
templates. They help reduce code duplic‐
ation and improve maintainability by
breaking views into smaller, modular
components.

By AkshayaAkshaya (akki_1)
cheatography.com/akki-1/

Published 17th November, 2024.
Last updated 17th November, 2024.
Page 2 of 3.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/akki-1/
http://www.cheatography.com/akki-1/cheat-sheets/ruby-on-rails-interview-questions
http://www.cheatography.com/akki-1/
https://apollopad.com

Ruby on rails interview Questions Cheat Sheet
by Akshaya (akki_1) via cheatography.com/208452/cs/44671/

Partials (cont)Partials (cont)

* Partial files start with an underscore (_) in
their filename, e.g., _header.html.erb. They
are called without the underscore, e.g., <%=
render 'header' %>.

SessionsSessions

Sessions store user-specific data across
requests, typically used for authentication
and tracking user activity.

In Rails, session data is stored in a cookie
(by default) and is accessible using the
session hash.

Use of Use of Rails consoleRails console

The Rails console is an interactive
command-line tool that allows developers to
interact with their Rails application directly

Interacting with the DatabaseInteracting with the Database: Test queries
and CRUD operations without writing a full
script.

Testing CodeTesting Code: Run snippets of Ruby or
Rails code to verify functionality.

DebuggingDebugging: Inspect data, test methods, or
debug application logic.

dependent destroydependent destroy

Used in associations specifies when record
is deleted, all records are also deleted.

* Used in one-many or many-many

Ex: Post have comments, if post deleted
comment also deleted

render vs redirect_torender vs redirect_to

renderrender: It view template without making a
new request(redirecting to browser). Simply
display view..

redirect_toredirect_to: Redirect browser to another
action/ URL, triggering new request.

find vs find_by vs wherefind vs find_by vs where

FindFind: It looks up a record using its primary
key(id). It gives error if records isn't found.

find_byfind_by: Searches for first record that
matches certain condition, return nil if no
match found.

wherewhere: Finds all records that meet specific
condition & returns them as list of objects.

resource vs resourcesresource vs resources

resourceresource: It will give routes to all command
operations except Index.

resourcesresources: It will give routes to all command
operations

validate vs validatesvalidate vs validates

validate validate : It is used to define custom valida‐
tions method.

validates validates : It is used to apply built-in
validation rules to model attributes.

delete vs destroydelete vs destroy

deletedelete: Doesnot execute callbacks.

destroydestroy: executes callbacks

Purpose of rails db:seed taskPurpose of rails db:seed task

The rails db:seed task is used to populate
the database with initial data.

MVC In generalMVC In general

MVC is a design pattern used across
different programming languages, not just
in Ruby. It divides code into Model, View,
and Controller layers, which helps organize
code by separating data handling, display,
and logic, making it easier to develop and
maintain applications.

Active Record in railsActive Record in rails

Active Record is part of the M in MVC
pattern — which is the layer of the system
responsible for representing data and
business logic.

By AkshayaAkshaya (akki_1)
cheatography.com/akki-1/

Published 17th November, 2024.
Last updated 17th November, 2024.
Page 3 of 3.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/akki-1/
http://www.cheatography.com/akki-1/cheat-sheets/ruby-on-rails-interview-questions
http://www.cheatography.com/akki-1/
https://apollopad.com

	Ruby on rails interview Questions Cheat Sheet - Page 1
	What is Ruby on rails?
	Migration
	How active record works in database?
	MVC Architecture
	Why Migrations are important
	ORM(Object-Relational-Mapping)
	Rails controller & purpose
	Gemfile
	Some Gem files
	MVC mean
	Active Record

	Ruby on rails interview Questions Cheat Sheet - Page 2
	Callbacks
	RESTful Architecture
	Polymorphic association
	Active Record Vs Active Model
	Routing
	Associations & types
	How do you handle errors?
	Partials

	Ruby on rails interview Questions Cheat Sheet - Page 3
	find vs find_by vs where
	Active Record in rails
	Sessions
	resource vs resources
	Use of Rails console
	validate vs validates
	delete vs destroy
	Purpose of rails db:seed task
	dependent destroy
	MVC In general
	render vs redirect_to

