\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{AK3} \pdfinfo{ /Title (ap-bio-unit-2-part-1.pdf) /Creator (Cheatography) /Author (AK3) /Subject (AP Bio Unit 2 Part 1 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FF1C7E} \definecolor{LightBackground}{HTML}{FFF0F6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{AP Bio Unit 2 Part 1 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{AK3} via \textcolor{DarkBackground}{\uline{cheatography.com/128134/cs/25001/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}AK3 \\ \uline{cheatography.com/ak3} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 31st October, 2020.\\ Updated 21st January, 2021.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{x{4.6629 cm} x{12.6071 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{All Cells have ......}} \tn % Row 0 \SetRowColor{LightBackground} Plasma Membrane & Bound by selective barrier that allows passage of enough O, nutrients, and wastes for the entire cell \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Cytosol & Semi-fluid, jelly-like substance, where organelles are suspended \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \seqsplit{Chromosomes} & Gene ares carried in from of DNA \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} Ribosomes & Tiny complexes that make proteins according to instructions from DNA \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} Cytoplasm & place of Cytosol \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Pro vs Eu}} \tn % Row 0 \SetRowColor{LightBackground} Prokaryote & Eukaryote \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} DNA is in {\emph{nucleus}}, which is bound in {\bf{nuclear envelope}} & DNA is concentrated in a region called {\bf{nucleoid}} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} Evolved before Eu & Evolved after Pro \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} Very low amounts of Organelles & Many complex organelles \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} Much Smaller than Pro & Much Larger than Pro \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{{\bf{Size}} relates to {\bf{Function}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Plant vs Animal Organelles}} \tn % Row 0 \SetRowColor{LightBackground} Plant & Animal \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Nucleus - nuclear envelope, nucleolus, chromatin & Nucleus - nuclear envelope, nucleolus, chromatin \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} Plasma Membrane & Plasma Membrane \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} Ribosomes & Ribosomes \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} Golgi Apparatus & Golgi Apparatus \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} No Lyosome & Lyosome \tn % Row Count 8 (+ 1) % Row 6 \SetRowColor{LightBackground} Endoplasmic Reticulum - rough ER, smooth ER & Endoplasmic Reticulum - rough ER, smooth ER \tn % Row Count 11 (+ 3) % Row 7 \SetRowColor{white} No Flaggellum & Flaggellum \tn % Row Count 12 (+ 1) % Row 8 \SetRowColor{LightBackground} No Centrosome & Centrosome \tn % Row Count 13 (+ 1) % Row 9 \SetRowColor{white} Cytoskeleton - microfilaments, microtubules & Cytoskeleton - microfilaments, intermediate filaments, microtubules \tn % Row Count 17 (+ 4) % Row 10 \SetRowColor{LightBackground} No Microvilli & Microvilli \tn % Row Count 18 (+ 1) % Row 11 \SetRowColor{white} Peroxisome & Peroxisome \tn % Row Count 19 (+ 1) % Row 12 \SetRowColor{LightBackground} Mitochondrion & Mitochondrion \tn % Row Count 20 (+ 1) % Row 13 \SetRowColor{white} Chloroplast & No Chloroplast \tn % Row Count 21 (+ 1) % Row 14 \SetRowColor{LightBackground} Central Vacuole & No Central Vacuole \tn % Row Count 22 (+ 1) % Row 15 \SetRowColor{white} Plasmodesmata & No Plasmodesmata \tn % Row Count 23 (+ 1) % Row 16 \SetRowColor{LightBackground} Cell Wall & No CEll Wall \tn % Row Count 24 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{Eukaryotic Cells - extensive, elaborately arranged internal membranes that {\emph{divide}} the cell into compartments \newline Compartments provide {\emph{different local environments}} that support specific metabolic functions, so {\emph{incompatible functions}} can take place simultaneously} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.7236 cm} x{6.748 cm} x{5.3984 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Function of Organelles in Eukaryotes}} \tn % Row 0 \SetRowColor{LightBackground} Name & Function & Plant vs Animal \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Nucleus & Contains most genes of eukaryotic cells & Both \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} Nuclear Envelope & Encloses the nucleus, separating its content from the cytoplasm. Is a double membrane made of a lipid bilayer & Both \tn % Row Count 12 (+ 7) % Row 3 \SetRowColor{white} Necleolus & associated with many proteins & Both \tn % Row Count 14 (+ 2) % Row 4 \SetRowColor{LightBackground} \seqsplit{Chromosomes} & DNA's discrete units taht c arry genetic information, Each one contains one long DNA molecules soociate & Both \tn % Row Count 21 (+ 7) % Row 5 \SetRowColor{white} Chromatin & complex of DNA and proteins making up chromosomes & \tn % Row Count 25 (+ 4) % Row 6 \SetRowColor{LightBackground} Plasma Membrane & membrane enclosing teh cell & Both \tn % Row Count 27 (+ 2) % Row 7 \SetRowColor{white} Ribosomes & complexes that make proteins: free in cystosol or bound to rough ER or nuclear envelope & Both \tn % Row Count 33 (+ 6) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.7236 cm} x{6.748 cm} x{5.3984 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Function of Organelles in Eukaryotes (cont)}} \tn % Row 8 \SetRowColor{LightBackground} Golgi Apparatus & organelle active in synthesis, modification and secretion of cell products & Both \tn % Row Count 5 (+ 5) % Row 9 \SetRowColor{white} Lysosome & digesive organelle where macromolecules are hydrolyzed & Animal \tn % Row Count 9 (+ 4) % Row 10 \SetRowColor{LightBackground} \seqsplit{Endoplasmic} reticulum & network of membranous sacs and tubes: active in membrane synthesis and other synthetic and metabolic processes & Both \tn % Row Count 16 (+ 7) % Row 11 \SetRowColor{white} Rough ER & is studded with ribosomes: Involved in the synthesis of proteins and also a membrane factory for the cell & Both \tn % Row Count 23 (+ 7) % Row 12 \SetRowColor{LightBackground} Smooth ER & not studded ribosomes: functions are the synthesis of lipids, steroid hormones, the detoxification of harmful metabolic byproducts and the storage and metabolism of calcium ions within the cell & Both \tn % Row Count 36 (+ 13) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.7236 cm} x{6.748 cm} x{5.3984 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Function of Organelles in Eukaryotes (cont)}} \tn % Row 13 \SetRowColor{LightBackground} Flaggellum & motility structure composed of cluster of microtubules w/i an extension of the plasma membrane & Animals \tn % Row Count 6 (+ 6) % Row 14 \SetRowColor{white} \seqsplit{Centrosomes} & region where the cell's microtubules are initiated; contains a pair of centrioles & Animals \tn % Row Count 12 (+ 6) % Row 15 \SetRowColor{LightBackground} \seqsplit{Cytoskeleton} & reinfores cell's shape: functions in a cell movement: components are made of proteins: includes microfilaments, intermediate microfilaments, and microtubules maintenance & Both \tn % Row Count 23 (+ 11) % Row 16 \SetRowColor{white} \seqsplit{Microfilaments} & made of actin protein subunits: maintennance of cell shape: changes in cell shape: muscle contradiction: cell motility: division of animal cells & Both \tn % Row Count 32 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.7236 cm} x{6.748 cm} x{5.3984 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Function of Organelles in Eukaryotes (cont)}} \tn % Row 17 \SetRowColor{LightBackground} \seqsplit{Intermediate} \seqsplit{Microfilaments} & maintenance of cell shape: anchorage of nucleus and certain other organelles: formation of nuclear lamina & Animals \tn % Row Count 7 (+ 7) % Row 18 \SetRowColor{white} \seqsplit{Microtubules} & maintenance of cell shape: cell motility like cilia or flagella: chromosomes movements in cell division: organelle movements & Both \tn % Row Count 15 (+ 8) % Row 19 \SetRowColor{LightBackground} Microvilli & projections that increase the cell's surface area & Animals \tn % Row Count 19 (+ 4) % Row 20 \SetRowColor{white} Peroxisome & organelle with various specialized metabolic functions: produces hydrogen peroxide as a by-product and then converts it to water & Both \tn % Row Count 27 (+ 8) % Row 21 \SetRowColor{LightBackground} \seqsplit{Mitochondrion} & organelle where cellur respiration occurs and most ATP is generated & Both \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.7236 cm} x{6.748 cm} x{5.3984 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Function of Organelles in Eukaryotes (cont)}} \tn % Row 22 \SetRowColor{LightBackground} Central Vacuole & prominent organelle in older plant cells: functions include storage, breakdown of waste products, and hrdrolysis of macromolecules: enlargement of the vacuole is a major mechanism of plant growth & Plant \tn % Row Count 13 (+ 13) % Row 23 \SetRowColor{white} \seqsplit{Chloroplast} & photosynthetic organelle: converts energy of sunlight to chemical energy stored in sugar molecules & Plant \tn % Row Count 20 (+ 7) % Row 24 \SetRowColor{LightBackground} \seqsplit{Plasmodesmata} & cytoplasmic channels through cell walls that connect the cytoplasms of adjacent cells & Plant \tn % Row Count 26 (+ 6) % Row 25 \SetRowColor{white} Cell Wall & outer layer that maintains cell's shape and protects cell from mechanical damage, made of cellulose, other polysaccharides, and proteins & Plant \tn % Row Count 35 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.7236 cm} x{6.748 cm} x{5.3984 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Function of Organelles in Eukaryotes (cont)}} \tn % Row 26 \SetRowColor{LightBackground} \seqsplit{Endomembrane} System & Nuclear Envelope, ENdoplasmic Reticulum, Golgi Apparatus, Lysosomes, various vesicles and vacuoles, Plasma Membrane & Not all parts are in both types \tn % Row Count 8 (+ 8) % Row 27 \SetRowColor{white} Vesicles & small sac or cyst containing fluid or gas & Both \tn % Row Count 11 (+ 3) % Row 28 \SetRowColor{LightBackground} Vacuoles & a small cavity or space in the tissues of an organism containing air or fluid & Both \tn % Row Count 16 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{5.2297 cm} x{5.9045 cm} x{5.7358 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Origins of Life}} \tn % Row 0 \SetRowColor{LightBackground} Theory Name & Definition & Evidence \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Abiogenesis & life evolved from nonliving chemical systems & \seqsplit{Oparin-Haldane} hypothesis and Miller-Urey Experiment \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} Hypo/Exp & Definition & Evidence \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \seqsplit{Oparin-Haldane} hypothesis & life arose gradually from inorganic molecules, with "building blocks" like amino acids forming first and then combining to make complex polymers. & Miller-Urey Experiment \tn % Row Count 17 (+ 11) % Row 4 \SetRowColor{LightBackground} Miller-Urey experiment & organic molecules needed for life could be formed from inorganic components & Used a sparking device to mimic a lightning storm on early Earth. Their experiment produced a brown broth rich in amino acid \tn % Row Count 27 (+ 10) % Row 5 \SetRowColor{white} RNA world hypothesis & that the first life was \seqsplit{self-replicating} RNA & Scientists think RNA building blocks \seqsplit{(nucleotides)} emerged in a chaotic soup of molecules on early Earth. These nucleotides bonded together to make the first RNAs. RNA store of genetic information, \seqsplit{self-replicate}, and act as a cellular catalyst \tn % Row Count 46 (+ 19) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{5.2297 cm} x{5.9045 cm} x{5.7358 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Origins of Life (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \seqsplit{Metabolism-first} hypothesis & metabolic networks before DNA or RNA & origin of life is triggered by the accumulation of very simple organic molecules in \seqsplit{thermodynamically} favorable \seqsplit{circumstances}. Simple organic molecules can then be combined in various ways that result in simple amino acids, lipids, etc. These, in turn, could act as catalysts for the formation of more organic molecules. This is the beginning of metabolism. \tn % Row Count 28 (+ 28) % Row 7 \SetRowColor{white} Organic compounds came on meteorites & Simple organic compounds might have come to early Earth on meteorites. & One scientist tested this - used guns - samples had main organic acids - gun will stimulate pressures of comets - results = the amino acids had survived and transformed into a compound - peptide molecules were formed. § One scientist tested this - used guns - samples had main organic acids - gun will stimulate pressures of comets - results = the amino acids had survived and transformed into a compound - peptide molecules were formed. ○ Don Brownley - designed experiment to know of space had building blacks of life - commissioned former spy plane to collect space dust - discovered that these particles had seeds of life - but not only possible source of life - asteroids and meteoroids have building blocks for life - had amino acids (blocks of life) § Enough meteoroids - 70 kinds of amino acids found on them - delivered by comets - comments size of mountains that could have contained organic compounds \tn % Row Count 99 (+ 71) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{5.2297 cm} x{5.9045 cm} x{5.7358 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Origins of Life (cont)}} \tn % Row 8 \SetRowColor{LightBackground} Life in Sea & life could have started in the oceans. & Yes - life is there despite scalding temperatures and no sunlight, many typed of creatures are surviving here § Yes - life is there despite scalding temperatures and no sunlight, many typed of creatures are surviving here \tn % Row Count 18 (+ 18) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{3.374 cm} x{6.748 cm} x{6.748 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Origins of Eukaryotes}} \tn % Row 0 \SetRowColor{LightBackground} Theory Name & Definition & Evidence \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Endosymbiotic} theory & Eukaryotic cells are believed to have evolved from early prokaryotes that were engulfed by phagocytosis & Mitochondrion and Chloroplast have double meb=mbarnecs, can reprodece in a fission-like process, have their own DNA which is similar to prokaryotic DNA, and has ribisomes similiar to prokaryotes. \tn % Row Count 15 (+ 13) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{SA; V Ratio}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Why are Cells So Small?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The higher the difference between SA:V ratio, the more amount of diffusion takes place} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What could a cell do in response to a shrinking SA/V ratio?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A cell could slow down its processes in response to shrinking SA: V because a smaller ratio of SA: V could mean more space available inside the cell. The cell could also start to divide or evolve} \tn % Row Count 10 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Justify "Numerous small cells are evolutionarily advantageous in regard to maintaining homeostasis in multicellular organisms"} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}This is true because having smaller cells maximize the surface area to volume ratio, helping the diffusion rate go up.} \tn % Row Count 16 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{As the mitochondria metabolize the glucose, they produce carbon dioxide waste. Would the CO2 be able to leave the cell faster if the cell had a smaller volume or larger volume?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}CO2 would be able to leave the cell with a smaller volume faster than a cell with a larger volume due to there being less surface area to journey.} \tn % Row Count 24 (+ 8) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Is bigger always better for a cell?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Bigger is not always better for the cell because cell's with a larger surface area would have waste and other unwanted objects in their cell for a longer time. This additional time traveling could also create more time objects to travel that a cell might need immediately.} \tn % Row Count 31 (+ 7) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{SA; V Ratio (cont)}} \tn % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Is it more desirable for a cell to have a small surface-area-to-volume ratio or a large surface-area-to-volume function of a cell?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}It would not be desirable for cells to have a small surface-area-to-volume because as seen above a lower surface-area-to-volume ratio would guarantee a larger cell that has more processes occuring and having a lower rate of diffusion (so waste would leave the cell slower).} \tn % Row Count 9 (+ 9) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What might be some reasons why these unicellular organisms have larger cells than cells with similar traits (heterotrophic, lacking cell walls) that are found in multicellular organisms?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Unicellular organisms have larger cells because they depend on only themselves for protection and nutrients. That one cell has to be specialized in different jobs, unlike multicellular cells that can work with each other.} \tn % Row Count 18 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Plasma membrane structure and function}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{How are phospholipids arranged in the cell membrane?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Heads facing out toward the water and the tail face each other.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Remembering the characteristics of a lipid, why must one of the fatty acid chains be replaced with a phosphate group?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}So the lipid can become hydrophilic. Lipids are naturally hydrophobic, so adding a phosphate group will change the lipid and give it a hydrophilic part.} \tn % Row Count 11 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What do you have to put into the membrane to help stabilize it?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cholesterol will help stabilize the membrane.} \tn % Row Count 14 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What does Cholesterol do for the membrane?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cholesterol acts as a Buffer for the membrane, it will dampen the effects of temperature} \tn % Row Count 17 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What is selectively permeable?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}That the membrane allows some substance to pass through, but not others.} \tn % Row Count 20 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What 2 molecules easily pass through the membrane?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Simple Diffusion - O2 moves high concentration (outside the cell) to lower concentration (inside the cell) and Simple Diffusion - CO2 moves high concentration (outside the cell) to lower concentration (inside the cell} \tn % Row Count 26 (+ 6) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What does polar mean?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Molecules that have areas where there is a partial positive or negative charge.} \tn % Row Count 29 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Why are CHANNEL PROTEINS part of the cell membrane?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}TO help transportation of substances that couldn't pass easily through the membrane} \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Plasma membrane structure and function (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Compare and contrast diffusion and facilitated diffusion.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}DIffusion happens naturally, but facilitated diffusion happens with help from channel proteins. Both do not require energy.} \tn % Row Count 5 (+ 5) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Why is energy (ATP) sometimes required for the transport of materials?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP is needed for active transport, this is when the substance needs to go against its concentration gradient. This type of transport is called active transport. What type of materials are moved via this transport mechanism? Negative charges substances} \tn % Row Count 13 (+ 8) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What do Carbohydrates do in plasma membranes?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Carbohydrates are like identification badges. Cells that have different membrane carbohydrates do different jobs/functions. The immune system uses the carbohydrates to recognize that your cells belong to you and are not viruses, bacteria, or other foreign cells.} \tn % Row Count 20 (+ 7) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What is dynamic equilibrium?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Dynamic equilibrium is a state where no change is occurring but individual molecules still react continuously.} \tn % Row Count 24 (+ 4) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Why can't sugar diffuse across the membrane?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Because it is polar and too large.} \tn % Row Count 26 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Why did diffusion stop after a certain period of time? .} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Because there was nothing left to diffuse} \tn % Row Count 29 (+ 3) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What is Osmosis?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Water moves into and out of the cell by osmosis. This is when the diffusion of water across the membrane from an area of high concentration to an area of low concentration.} \tn % Row Count 34 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Plasma membrane structure and function (cont)}} \tn % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What are solutes?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Solutes are the substances that are dissolved in water.} \tn % Row Count 3 (+ 3) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What is Hypotonic?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When there is a low amount of solutes in water.} \tn % Row Count 5 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What is Hypertonic?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When there is a high amount of solutes in water.} \tn % Row Count 8 (+ 3) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What is Isotonic?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When there is an equal amount of solutes in water} \tn % Row Count 11 (+ 3) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What is Water Potenial?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}This measures the concentration of free water molecules. It is a measure of the tendency of these molecules to diffuse to another area. The more free water molecules, the higher the Water Potential.} \tn % Row Count 17 (+ 6) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Define Toncity} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The ability of an extracellular solution to make water move into or out of a cell by osmosis} \tn % Row Count 20 (+ 3) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What will happen when a cell is placed in a hypertonic solution?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}There will be a net flow of water out of the cell, and the cell will lose volume. A plasmolyzed plant cell has gaps between the cell wall and the cell membrane. This occurs when a plant cell is placed in a hypotonic solution. Water molecules move out of the cell resulting in the loss of turgor pressure} \tn % Row Count 29 (+ 9) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What will happen when a cell is placed in a hypotonic solution?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}There will be a net flow of water into the cell, and the cell will gain volume. . A turgid cell is a cell that has turgor pressure. A plant cell that is placed in a hypotonic solution would cause the water to move into the cell by osmosis, resulting in large turgor pressure being exerted against the plant cell wall.} \tn % Row Count 38 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Plasma membrane structure and function (cont)}} \tn % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{What will happen when a cell is placed in a isotonic solution?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}There will be no net flow of water into or out of the cell, and the cell's volume will remain stable. A flaccid plant cell is not swollen and the cell membrane does not press against the cell wall tightly.} \tn % Row Count 7 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \end{document}