\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Ajita (Ajita)} \pdfinfo{ /Title (respiratory-system.pdf) /Creator (Cheatography) /Author (Ajita (Ajita)) /Subject (Respiratory System Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{005580} \definecolor{LightBackground}{HTML}{EFF4F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Respiratory System Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Ajita (Ajita)} via \textcolor{DarkBackground}{\uline{cheatography.com/185822/cs/38822/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Ajita (Ajita) \\ \uline{cheatography.com/ajita} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 20th May, 2023.\\ Updated 22nd May, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Pulmonary Ventilation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Breathing; inhalation and exhalation of air involving exchange of air between the lungs and the atmosphere.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{It occurs due to pressure difference between the lungs and the atmosphere created by the contraction and expansion of respiratory muscles.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Before respiration, air pressure inside the lungs is equal to air pressure in the atmosphere, ie, 760 mmHg.} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Inhalation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{For {\bf{inhalation}} to occur, {\emph{air pressure in the lungs \textless{} air pressure of the atmosphere.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{According to {\bf{Boyle's law}}, volume of container is inversely proportional to air pressure.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Hence, expansion of lungs must take place for decrease in air pressure within them.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Lung expansion occurs by contraction of diaphragm, external intercostal muscles and accessory inspiration muscles.} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Diaphragm}}: a dome shaped skeletal muscle that forms the floor of the thoracic cavity. It in innervated by the phrenic nerves (emerging from the 3rd, 4th and 5th cervical levels of the spinal cord). The contraction of the diaphragm causes it to flatten and increases the vertical diameter of the thoracic cavity. This decreases the air pressure by 2-3 mmHg and causes and inhalation of 500 ml of air.} \tn % Row Count 18 (+ 9) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{External Intercostals}}: contraction of these muscles causes an elevation of the ribs. They increase the anteroposterior and lateral diameters of the chest cavity.} \tn % Row Count 22 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Accessory muscles of inhalation}}: Serve little purpose during quiet inhalation, however they are capable of contracting vigorously during forced ventilation. They include: sternocleidomastoid muscles (elevates the sternum), scalene muscles (elevate the first two ribs) and the pectoralis minor muscle (elevate third through fifth rib)} \tn % Row Count 29 (+ 7) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\emph{As the lung volume increases in this way, the air pressure inside the lungs, called {\bf{alveolar (intrapulmonic) pressure}}, drops from 760 to 758 mmHg.}}} \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Inhalation (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The process of inhalation is said to be active.} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Exhalation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{For {\bf{exhalation to occur}}, {\emph{air pressure in the lungs\textgreater{} atmospheric pressure.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Exhalation results from elastic recoil of the chest wall and lungs, both of which has a tendency to spring back when stretched.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Two inwardly directed forces result in elastic recoil:} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{1. the recoil of elastic fibres that were stretched during inhalation.} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{2. the inward pull of the surface tension due to film of alveolar fluid.} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{As the diaphragm relaxes, the dome moves upwards due to its elasticity.} \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{As the external intercostals relax, the ribs move downwards.} \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\emph{This results in an increase in air pressure to about 760 mmHg.}}} \tn % Row Count 17 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The process of exhalation is said to be passive.} \tn % Row Count 18 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{During forceful exhalation, the internal intercostal and the abdominal muscles come into play.} \tn % Row Count 20 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{They contract, causing an increase in air pressure within the lungs.} \tn % Row Count 22 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Contraction of the abdominal muscles moves the inferior ribs downward and compresses the abdominal viscera, thereby forcing the diaphragm superiorly.} \tn % Row Count 25 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Contraction of the internal intercostals, which extend inferiorly and posteriorly between adjacent ribs, pulls the ribs inferiorly.} \tn % Row Count 28 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Factors Affecting Pulmonary Ventilation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Surface Tension:}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Compliance:}} Compliance refers to how much effort is required by the lungs to stretch the lungs and the chest walls. High compliance means that the lungs and chest wall expand easily. In lungs, compliance is related to two princple factors: surface tension and elasticity.} \tn % Row Count 7 (+ 6) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Airflow Resistance: }}} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Exchange of Oxygen and Carbon Dioxide}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Exchange of oxygen and carbon dioxide between alveolar air and pulmonary blood occurs by simple diffusion and is governed by the {\bf{Dalton's Law}} and the {\bf{Henry's Law}}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Dalton's Law}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\emph{Each gas in a mixture of gases exerts its own pressure as if no other gases as present. }} \{\{border=1\}\}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{The pressure of a specific gas in a mixture is call partial pressure.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The partial pressures of O2 and CO2 determines their movement between atmosphere and lungs, lung and blood and blood and body cells.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Each gas diffuses across a semi permeable membrane from a region of higher pressure to a region of lower pressure.} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Henry's Law}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\emph{The amount of gas that will dissolve in a liquid is proportional to its partial pressure and solubility.}} \{\{border=1\}\}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{The ability of gas to stay in liquid is higher when their partial pressure is higher and when it has high solubility in water.} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{External Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{External respiration, or pulmonary gas exchange is the diffusion of )2 from the air in the alveoli to the blood in the pulmonary capillaries and diffusion of CO2 in the opposite direction.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{It is the conversion of deoxygenated blood coming from the right side of the heart to oxygenated blood going to the left side of the heart.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{O2 diffuses from alveolar air, where its PO2 is 105 mmHg to blood capillaries, where its PO2 is 40 mmHg.}}} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Diffusion occurs till the PO2 of the blood in the pulmonary capillaries matches the PO2 of the alveolar air, ie, 105 mmHg.} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{The PCO2 in the deoxygenated blood of the pulmonary capillaries is 45 mmHg and in the alveolar air is 40 mmHg.}}} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Hence, CO2 diffuses from deoxygenated blood into the alveoli till the PCO2 of the blood decreases to 40 mmHg.} \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/ajita_1684561136_Screenshot 2023-05-20 at 10.49.27 AM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Changes in partial pressures of oxygen and carbon dioxide (in mmHg) during external and internal respiration.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Internal Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The exchange of gases between systemic capillaries and tissue cells is know as Internal Respiration or Systemic Gas Exchange.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{PO2 of the systemic capillaries (100 mmHg) is more than PO2 of the tissue cells (40mmHg). Hence, oxygen from the capillaries diffuses into the tissue cells, where they are used for energy production.}}} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{By the time, blood exits the capillaries, PO2 is 40 mmHg.} \tn % Row Count 10 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{PCO2 of the systemic capillaries (40 mmHg) is less than PCO2 of the tissue cells (45 mmHg). Hence, CO2, which is constantly produced by the cells, diffuses from the cells into the blood in the systemic capillaries.}}} \tn % Row Count 15 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The deoxygenated blood is then pumped to the heart and enters another cycle of external respiration.} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Factors affecting rate of Gas Exchange}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{1.}} Partial pressure difference of the gases.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{2.}} Surface area available for gas exchange.} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{3.}} Diffusion distance.} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{4.}} Molecular weight and solubility of gases.} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Transport of Oxygen}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{1.5\% of inhaled O2 dissolves in the blood plasma, while 98.5\% of inhaled O2 bind to haemoglobin in the red blood cells.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Heme portion of haemoglobin contains 4 iron atoms, each of which binds to an oxygen molecule.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Oxygen and haemoglobin combine in a reversible reaction to form oxyhemoglobin.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{{\emph{Relationship between Oxyhemoglobin and Partial Pressure of Oxygen:}}}}} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The higher the PO2, the more oxygen will bind to haemoglobin. When reduced haemoglobin is completely converted into oxyhemoglobin, it is said to be fully saturated. When haemoglobin is a mix of Hb and Hb-O2, it is said to be partially saturated.} \tn % Row Count 14 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\emph{Percent Saturation of Haemoglobin:}} average saturation of haemoglobin with oxygen.} \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The relation between the Percent Saturation and Partial Pressure of Oxygen is illustrated by Oxygen- Haemoglobin Dissociation Curve.} \tn % Row Count 19 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{When PO2=20 (deoxygenated blood in contracting skeletal muscles), percent saturation = 35\%} \tn % Row Count 21 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{When PO2=40 (deoxygenated blood in systemic veins), percent situation = 75\%} \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{When PO2=100 (oxygenated blood in systemic arteries), percent saturation is near 100.} \tn % Row Count 25 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{{\emph{Factors Influencing Affinity of Haemoglobin towards Oxygen:}}}}} \tn % Row Count 27 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{1. Acidity:}} An increase in acidity, causes affinity of haemoglobin to O2 to decrease. Hence, curve shifts right. Decreases affinity means oxygen more readily dissociates from the haemoglobin and is more easily available to tissue cells.} \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Transport of Oxygen (cont)}} \tn % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{\#Bohr's Effect:}} the effect of pH on the affinity of haemoglobin towards oxygen. An increase in H\textasciicircum{}+\textasciicircum{} in blood causes O2 to unload from haemoglobin and the binding of haemoglobin to oxygen causes unloading of H\textasciicircum{}+\textasciicircum{} from haemoglobin. The explanation for the Bohr effect is that hemo- globin can act as a buffer for hydrogen ions (H􏱩). But when H􏱩 ions bind to amino acids in haemoglobin, they alter its structure slightly, decreasing its oxygen-carrying capacity.} \tn % Row Count 10 (+ 10) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{2. Partial Pressure of CO2:}} As CO2 enters the blood, much of it is converted into carbonic acid (H2CO3), a reaction catalysed by and enzyme in RBC called carbonic anhydrase. The carbonic acid does formed dissociates into bicarbonate ions and H\textasciicircum{}+\textasciicircum{} ions. As H\textasciicircum{}+\textasciicircum{} ion concentration in blood increases, acidity increases, causing more dissociation of oxygen from haemoglobin. Dissociation curve moves right.} \tn % Row Count 19 (+ 9) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{3. Temperature:}} Within limits, an increase in temperature promotes unloading of O2 from haemoglobin. Metabolically active cells release acids and heat which in turn promote release of O2 from haemoglobin to be used by them.} \tn % Row Count 24 (+ 5) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{4. 2,3-bisphosphoglycerate:}} decreases affinity of haemoglobin towards oxygen. Certain hormones such as hGH, thyroxine epinephrine, norepinephrine and testosterone increase BPG production. ,} \tn % Row Count 28 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Foetal Haemoglobin has a much greater affinity to oxygen that adult haemoglobin. This is very important because the O2 saturation in maternal blood in the placenta is quite low, and the foetus might suffer hypoxia were it not for the greater affinity of foetal haemoglobin for O2.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/ajita_1684575842_Screenshot 2023-05-20 at 12.58.48 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Binding of Oxygen to Haemoglobin to form Oxyhemoglobin.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/ajita_1684575870_Screenshot 2023-05-20 at 1.25.06 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Oxygen Dissociation Curve. Factors increasing affinity of haemoglobin towards oxygen move the graph towards the left, and factors decreasing the affinity of haemoglobin towards oxygen move the graph towards the right.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Transport of Carbon Dioxide}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{1. Dissolved CO2:}} The smallest percentage—about 7\%—is dissolved in blood plasma.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{2. Carbamino compounds:}} about 23\%, combines with the amino groups of amino acids and proteins in blood to form carbamino compounds. most of the CO2 transported in this manner is bound to hemoglobin. The main CO2 binding sites are the termi- nal amino acids in the two alpha and two beta globin chains. Heamoglobin that has bound CO2 is termed carbaminohemoglo- bin (Hb–CO2)} \tn % Row Count 10 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{3. Bicarbonate ions:}} icarbonate ions. The greatest percentage of CO2—about 70\%—is transported in blood plasma as bicarbonate ions (HCO3􏳠). As CO2 diffuses into systemic capillaries and enters red blood cells, it reacts with water in the presence of the enzyme carbonic anhydrase (CA) to form carbonic acid, which dissociates into H\textasciicircum{}+\textasciicircum{} and HCO3\textasciicircum{}-\textasciicircum{}.} \tn % Row Count 18 (+ 8) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{\#Haldane Effect:}} The lower the amount of oxyhemoglobin (Hb–O2), the higher the CO2 carrying capacity of the blood, a relationship known as the {\bf{Haldane effect.}}} \tn % Row Count 22 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Some HCO3\textasciicircum{}-\textasciicircum{} moves out into the blood plasma, down its concentration gradient. In exchange, chloride ions (Cl\textasciicircum{}-\textasciicircum{}) move from plasma into the RBCs. This exchange of negative ions, which maintains the electrical balance between blood plasma and RBC cytosol, is known as the chloride shift} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/ajita_1684576847_Screenshot 2023-05-20 at 3.21.51 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Formation of carbonic acid by carbonic anhydrase and its dissociation to form bicarbonate ions.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/ajita_1684576896_Screenshot 2023-05-20 at 3.31.08 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Summary of chemical reactions that occur during gas exchange.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/ajita_1684590091_Screenshot 2023-05-20 at 7.08.25 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Transport of oxygen (O2) and carbon dioxide (CO2) in the blood.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Summary of chemical reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(a) As carbon dioxide (CO2) is exhaled, haemoglobin (Hb) inside red blood cells in pulmonary capillaries unloads CO2 and picks up O2 from alveolar air. Binding of O2 to Hb-H releases hydrogen ions (H\textasciicircum{}+\textasciicircum{}). Bicarbonate ions (HCO3\textasciicircum{}-\textasciicircum{}) pass into the RBC and bind to released H\textasciicircum{}+\textasciicircum{}, forming carbonic acid (H2CO3). The H2CO3 dissociates into water (H2O) and CO2, and the CO2 diffuses from blood into alveolar air. To maintain electrical balance, a chloride ion (Cl\textasciicircum{}-\textasciicircum{}) exits the RBC for each HCO3\textasciicircum{}-\textasciicircum{} that enters (reverse chloride shift). (b) CO2 diffuses out of tissue cells that produce it and enters red blood cells, where some of it binds to haemoglobin, forming carbaminohemoglobin (Hb–CO2). This reaction causes O2 to dissociate from oxyhemoglobin (Hb–O2). Other molecules of CO2 combine with water to produce bicarbonate ions (HCO3\textasciicircum{}-\textasciicircum{}) and hydrogen ions (H\textasciicircum{}+\textasciicircum{}). As Hb buffers H\textasciicircum{}+\textasciicircum{}, the Hb releases O2 (Bohr effect). To maintain electrical balance, a chloride ion (Cl\textasciicircum{}-\textasciicircum{}) enters the RBC for each HCO3\textasciicircum{}+\textasciicircum{} that exits (chloride shift).} \tn % Row Count 21 (+ 21) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Control of Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Respiratory Centres:}} Clusters of neurons in the medulla oblongata and pons in the brain stem that send nerve impulses to the respiratory muscles, stimulating them to contract.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{The respiratory centre can be divided into three areas on the basis of their function:} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{1) Medullary Rhythmicity Area:}} controls the basic rhythm of respiration and is present in the medullary oblongata. Can be classified into inspiratory and expiratory areas:} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\emph{Inspiratory Area:}} Nerve impulses generated from the inspiratory area set the basic rhythm of breathing. Nerve impulses are generated for 2 seconds. The nerve impulse travels to the external intercostals through the intercostal nerves and the diaphragm through the phrenic nerves. This causes the diaphragm and the muscles to contract. At the end of the 2 seconds, the muscles must relax for 3 seconds, allowing for passive elastic recoil of the muscles for exhalation.} \tn % Row Count 20 (+ 10) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\emph{Expiratory Area:}} Remains inactive during quiet breathing. During forceful expiration, the inspiratory centre activates the expiratory centre to send nerve impulses to the abdominal and internal intercostals muscles, causing them to contract and forcing air out of the lungs.} \tn % Row Count 26 (+ 6) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{2) Pneumotaxic Area:}} Present in the upper pons. Transmit inhibitory impulses to the inspiratory area, preventing the lungs from becoming too full of air.} \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Control of Respiration (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{3) Apneustic Area:}} Present in the lower pons. This area sends stimulatory impulses to the inspiratory area that activate it and prolong inhalation.} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \end{document}