Vocab	
Modus Ponens	If \mathbf{P}, then \mathbf{Q}. \mathbf{P}. Therefore, \mathbf{Q}. If the cake is made with sugar, then the cake is sweet. The cake is made with sugar. Therefore, the cake is sweet.
Modus Tollens	If \mathbf{P}, then \mathbf{Q}. Not \mathbf{Q}. Therefore, not P. If the cake is made with sugar, then the cake is sweet. The cake is not sweet. Therefore, the cake is not made with sugar.
Onto Function	For every element Y in the codomain Y of F there is at least one element X in the domain X of X . Horizontal Line Test.
One-To- One Function	A function for which every element of the range of the function corresponds to exactly one element of the domain.
Bijection	Each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set.

By ajhalling

cheatography.com/ajhalling/

Vocabulary (cont)	
Domain	The set of all possible input x values which will make the function "work", and output y values.
Codomain	The set of all possible output values of a function.
Range	The set of actual output values of a function.
Preimage	Another word for Domain
Image	Another word for Codomain
Fibonacci Sequence	$F(n)=F(n-1)+F(n-2)$
Universal Quantifier	$\boldsymbol{\nabla}$ Expresses that the statements within its scope are true for everything, or every instance of a specific thing.
Existential Quantifier	$\boldsymbol{\exists}$ Expresses that the statements within its scope are true for at least one instance of something.
Scope	Denoted by symbols such as parenthesis and brackets to identify the section of the wff to which the quantifier applies. $(\forall x)[P(x)->Q(x)]$ - the scope of $\forall x$ is found within the brackets.

Not published yet.
Last updated 25th October, 2019.
Page 1 of 2.

Vocabulary (cont)	
Universal Instantiation	Lets you remove \forall from a predicate.
Existe- ntial Instan- tiation	Lets you remove $\mathbf{3}$ from a predicate. - Must be used before Universal Instantiation
Method/S ubroutine	A subroutine (such as a function) returns a a value. A method is a subroutine or function that you can call on an object in an OO language.
Principle of Well- Ordering	Every collection of positive integers that contains any members at all has a smallest number
1st Principle of Mathem- atical Induction	Two assertions: 1. You can reach the first rung 2. Once you get to a rung, you can always climb to the next one up. (Implication). 1. $\mathrm{P}(1)$ 2. For any positive integer $k, \mathrm{P}(\mathrm{k})->\mathrm{P}(\mathrm{k}+1)$
2nd Principle of Mathem- atical Induction	Show that it's true for $P(1)$, assume it's true for some value "k", use that assumption to show that it's true for $\mathrm{K}+1$
Binomial Theorem	Expands binomials. $(a+b)^{2}=a_{2}$ $+2 a b+b^{\wedge} 2$

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Vocabulary (cont)	
Pascal's Triangle	a triangular array of numbers in which those at the ends of the rows are 1 and each of the others is the sum of the nearest two numbers in the row above (the apex, 1, being at the top).
1st Order Recurrence Relation	No need to find the two that precede it. Does it fit the pattern? $S(n)=c S(n-1)+g(n)$ Step 1. Find C. Find $g(n)$. Step 3. Plug n Chug.
2nd Order Recurrence Relation	Requires the values from the previous two solutions. Fibonacci sequence is an example of 2nd Order RR.
Closed- Form Solution	a mathematical expression that can be evaluated in a finite number of operations. No recurrence.
Binary Predicate	Tests the truth value of a predicate which takes two arguments.
Domain of Interpretation	Explains what is objects the predicate has meaning over. If $P(x) x$ lives in the water, domain could be sea turtles.

By ajhalling

cheatography.com/ajhalling/

Vocabulary (cont)	
Big-O	Explains where the "bulk" of the work is happening in a function. Drops coefficients.
Comput- ational Complexity	The amount of resources required for running an algorithm

Permut- An ordered arrangement of ation objects. Multiply the factorial of the $P(n, r)$ values to find the values. $n!/ n-r$!
Factorial A value multiplied by the value before it subsequently to $1.5!=54321$

Combin- An unordered arrangement of ation objects $C(n, r) \cdot n!/(r!(n-r)!)$

Proofs Using Predicate Logic

Identify the Scope of a Variable in a Predicate

Identify the Scope of a Variable in a Program

Identify the Correct Negation of a Predicate

Big-O Value for the Complexity of an Algorithm

Do a Proof Using Mathematical Induction

Determine Whether a Relation is a
Function or Not

Identify the Domain and Codomain of a Function

Classify a Function as Onto, 1-to-1, or Bjection

Not published yet.
Last updated 25th October, 2019.
Page 2 of 2.

Convert English Statements to Predicate Statements

Expand a Binomial Using Binomial Theorem

Write the First Few Rows of Pascal's Triangle

Derive Closed Form Solution for 1st \& 2nd Order RR

Behavior of Java AND/OR Operators \&\&, \&, |, ||

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

