Cheatography

CIS 206 Cheat Sheet by ajhalling via cheatography.com/97552/cs/20906/

Vocabulary		
Modus Ponens	If P, then Q. P. Therefore, Q. If the cake is made with sugar, then the cake is sweet. The cake is made with sugar. Therefore, the cake is sweet.	
Modus Tollens	If P, then Q. Not Q. Therefore, not P. If the cake is made with sugar, then the cake is sweet. The cake is not sweet. Therefore, the cake is not made with sugar.	
Onto Function	For every element Y in the codomain Y of F there is at least one element X in the domain X of X. Horizontal Line Test.	
One-To- One Function	A function for which every element of the range of the function corresponds to exactly one element of the domain.	
Bijection	Each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set.	

Vocabulary (cont)

DomainThe set of all possible input x-values which will make the function "work", and output y-values.CodomainThe set of all possible output values of a function.RangeThe set of actual output values of a function.PreimageAnother word for Domain ImageAnother word for Codomain Fibonacci $F(n) = F(n-1) + F(n-2)$ Sequence \forall Expresses that the statements within its scope ar true for everything, or every instance of a specific thing.Existential I Expresses that the statements within its scope ar true for at least one instance of something.ScopeDenoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. $(\forall x)[P(x)->Q(x)] -$ the scope o $\forall x$ is found within the		
CodomainThe set of all possible output values of a function.RangeThe set of actual output values of a function.PreimageAnother word for Domain ImageAnother word for Codomain Fibonacci $F(n) = F(n-1) + F(n-2)$ Sequence \forall Expresses that the statements within its scope ar true for everything, or every instance of a specific thing.Existential \blacksquare Expresses that the statements within its scope ar true for at least one instance of something.ScopeDenoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. $(\forall x)[P(x)->Q(x)] -$ the scope o $\forall x$ is found within the	Domain	The set of all possible input x- values which will make the function "work", and output y- values.
RangeThe set of actual output values of a function.PreimageAnother word for DomainImageAnother word for CodomainImageF(n) = F(n-1) + F(n-2)Sequence \forall Expresses that the statements within its scope ar true for everything, or every instance of a specific thing.Existential Quantifier \blacksquare Expresses that the statements within its scope ar true for at least one instance of something.ScopeDenoted by symbols such as parenthesis and brackets to 	Codomain	The set of all possible output values of a function.
PreimageAnother word for DomainImageAnother word for CodomainFibonacci $F(n) = F(n-1) + F(n-2)$ Sequence \forall Expresses that theQuantifier \forall Expresses that theQuantifierstatements within its scope ar true for everything, or every instance of a specific thing.Existential \blacksquare Expresses that theQuantifierstatements within its scope ar true for at least one instance of something.ScopeDenoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. $(\forall x)[P(x)->Q(x)] -$ the scope o $\forall x$ is found within the	Range	The set of actual output values of a function.
ImageAnother word for CodomainFibonacci $F(n) = F(n-1) + F(n-2)$ Sequence \forall Expresses that theQuantifier \forall Expresses that theQuantifier \exists Expresses that theQuantifier \exists Expresses that theQuantifier \exists Expresses that theQuantifier \exists Expresses that theScopeDenoted by symbols such as parenthesis and brackets to identify the section of the wfit which the quantifier applies. $(\forall x)[P(x)->Q(x)] - the scope or\forall x is found within the$	Preimage	Another word for Domain
 Fibonacci Sequence Universal V Expresses that the statements within its scope ar true for everything, or every instance of a specific thing. Existential ■ Expresses that the quantifier statements within its scope ar true for at least one instance of something. Scope Denoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. (∀x)[P(x)->Q(x)] - the scope o ∀x is found within the 	Image	Another word for Codomain
Universal ♥ Expresses that the Quantifier statements within its scope ar true for everything, or every instance of a specific thing. Existential ■ Expresses that the Quantifier statements within its scope ar true for at least one instance of something. Scope Denoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. (∀x)[P(x)->Q(x)] - the scope or ∀x is found within the	Fibonacci Sequence	F(n) = F(n-1) + F(n-2)
 Existential J Expresses that the Quantifier statements within its scope ar true for at least one instance of something. Scope Denoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. (∀x)[P(x)->Q(x)] - the scope of ∀x is found within the 	Universal Quantifier	♥ Expresses that the statements within its scope are true for everything, or every instance of a specific thing.
Scope Denoted by symbols such as parenthesis and brackets to identify the section of the wff t which the quantifier applies. $(\forall x)[P(x)->Q(x)]$ - the scope o $\forall x$ is found within the	Existential Quantifier	B Expresses that the statements within its scope are true for at least one instance of something.
brackets.	Scope	Denoted by symbols such as parenthesis and brackets to identify the section of the wff to which the quantifier applies. $(\forall x)[P(x)->Q(x)]$ - the scope of $\forall x$ is found within the brackets.

Vocabulary (cont)

,	
Universal Instan- tiation	Lets you remove ♥ from a predicate.
Existe- ntial Instan- tiation	Lets you remove ∃ from a predicate Must be used before Universal Instantiation
Method/S ubroutine	A subroutine (such as a function) returns a a value. A method is a subroutine or function that you can call on an object in an OO language.
Principle of Well- Ordering	Every collection of positive integers that contains any members at all has a smallest number
1st Principle of Mathem- atical Induction	Two assertions: 1. You can reach the first rung 2. Once you get to a rung, you can always climb to the next one up. (Impli- cation). 1. P(1) 2. For any positive integer <i>k</i> , P(k)->P(k+1)
2nd Principle of Mathem- atical Induction	Show that it's true for P(1), assume it's true for some value "k", use that assumption to show that it's true for K+1
Binomial Theorem	Expands binomials. $(a+b)^2 = a^2$ + 2ab + b^2

By **ajhalling**

cheatography.com/ajhalling/

Not published yet. Last updated 25th October, 2019. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

CIS 206 Cheat Sheet by ajhalling via cheatography.com/97552/cs/20906/

Vocabulary (cont)		
Pascal's Triangle	a triangular array of numbers in which those at the ends of the rows are 1 and each of the others is the sum of the nearest two numbers in the row above (the apex, 1, being at the top).	
1st Order Recurrence Relation	No need to find the two that precede it. Does it fit the pattern? $S(n) = cS(n-1) + g(n)$ Step 1. Find C. Find $g(n)$. Step 3. Plug n Chug.	
2nd Order Recurrence Relation	Requires the values from the previous two solutions. Fibonacci sequence is an example of 2nd Order RR.	
Closed- Form Solution	a mathematical expression that can be evaluated in a finite number of operations. No recurrence.	
Binary Predicate	Tests the truth value of a predicate which takes two arguments.	
Domain of Interpret- ation	Explains what is objects the predicate has meaning over. If $P(x) \times lives$ in the water, domain could be sea turtles.	

Vocabulary (cont)

Big-O	Explains where the "bulk" of the work is happening in a function. Drops coefficients.
Comput- ational Complexity	The amount of resources required for running an algorithm
Permut- ation	An ordered arrangement of objects. Multiply the factorial of the $P(n,r)$ values to find the values. $n!/n-r!$
Factorial	A value multiplied by the value before it subsequently to 1. $5! = 5 4 3 2 1$
Combin- ation	An unordered arrangement of objects C(n,r). n!/(r!(n-r)!)

Proofs Using Predicate Logic

Identify the Scope of a Variable in a Predicate

Identify the Scope of a Variable in a Program

Identify the Correct Negation of a Predicate

Big-O Value for the Complexity of an Algorithm

Do a Proof Using Mathematical Induction

Determine Whether a Relation is a Function or Not

Identify the Domain and Codomain of a Function

Classify a Function as Onto, 1-to-1, or Bijection

By **ajhalling** cheatography.com/ajhalling/

Not published yet. Last updated 25th October, 2019. Page 2 of 2. Convert English Statements to Predicate Statements

Expand a Binomial Using Binomial Theorem

Write the First Few Rows of Pascal's Triangle

Derive Closed Form Solution for 1st & 2nd Order RR

Behavior of Java AND/OR Operators &&, &, |, ||

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com