\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{DarioPittera (aggialavura)} \pdfinfo{ /Title (python-supported-vector-machine-svm.pdf) /Creator (Cheatography) /Author (DarioPittera (aggialavura)) /Subject (Python - Supported Vector Machine (SVM) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FFA938} \definecolor{LightBackground}{HTML}{FFF4E6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Python - Supported Vector Machine (SVM) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{DarioPittera (aggialavura)} via \textcolor{DarkBackground}{\uline{cheatography.com/83764/cs/20045/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}DarioPittera (aggialavura) \\ \uline{cheatography.com/aggialavura} \\ \uline{\seqsplit{www}.dariopittera.com} \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 17th July, 2019.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{TO START}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{\# IMPORT DATA LIBRARIES \newline import pandas as pd \newline import numpy as np \newline \newline \# IMPORT VIS LIBRARIES \newline import matplotlib.pyplot as plt \newline import seaborn as sns \newline \%matplotlib inline \newline \newline \# IMPORT MODELLING LIBRARIES \newline from sklearn.model\_selection import train\_test\_split \newline from sklearn.svm import SVC \newline from sklearn.metrics import classification\_report,confusion\_matrix} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.64 cm} x{3.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TRAIN MODEL}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-columns\}\} SPLIT DATASET}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} X = df{[}{[}'col1','col2',etc.{]}{]} & create df features \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} y = df{[}'col'{]} & create df var to predict \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} X\_train, X\_test, y\_train, y\_test = \{\{nl\}\} train\_test\_split(\{\{nl\}\}~~X,\{\{nl\}\}~~y, \{\{nl\}\}~~test\_size=0.3) & split df in train and test df \tn % Row Count 11 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-signal\}\} FIT THE MODEL}}} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} svc= SVC() & instatiate model \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} svc.fit(X\_train,y\_train) & train/fit the model \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-bullseye\}\} MAKE PREDICTIONS}}} \tn % Row Count 16 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{pred = svm.predict(X\_test)} \tn % Row Count 17 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-check\}\} EVAUATE MODEL}}} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{\seqsplit{print(confusion\_matrix(y\_test},pred))} \tn % Row Count 19 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{\seqsplit{print(classification\_report(y\_test},pred))} \tn % Row Count 20 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{GRID SEARCH EXPLANATION}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Finding the right parameters (like what C or gamma values to use) is a tricky task! But luckily, we can be a little lazy and just try a bunch of combinations and see what works best! This idea of creating a 'grid' of parameters and just trying out all the possible combinations is called a Gridsearch, this method is common enough that Scikit-learn has this functionality built-in with GridSearchCV! The CV stands for cross-validation which is the GridSearchCV takes a dictionary that describes the parameters that should be tried and a model to train. The grid of parameters is defined as a dictionary, where the keys are the parameters and the values are the settings to be tested. \newline % Row Count 15 (+ 15) \seqsplit{============================================} \newline % Row Count 17 (+ 2) {\bf{C}} is the parameter for the soft margin cost function, which controls the influence of each individual support vector; this process involves trading error penalty for stability. C is the {\bf{cost of misclassification of training examples}} against the simplicity of the decision surface. A {\bf{large C}} gives low bias and high variance. Low bias because you penalize the cost of missclasification a lot. A {\bf{small C}} gives you higher bias and lower variance. \newline % Row Count 27 (+ 10) {\bf{Gamma}} is the parameter of a {\bf{Gaussian Kernel}} (to handle non-linear classification). Gamma {\bf{controls the shape of the "peaks"}} where you raise the points. A small gamma gives a pointed bump in the higher dimensions, a large gamma gives a softer, broader bump. So a {\bf{small gamma}} will give you low bias and high variance while a {\bf{large gamma}} will give you higher bias and low variance. You usually find the best C and Gamma hyper-parameters using Grid-Search. \newline % Row Count 37 (+ 10) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{GRID SEARCH EXPLANATION (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Kernel}} will decide the hyperplane you will use to divide the points. \newline % Row Count 2 (+ 2) \seqsplit{============================================} \newline % Row Count 4 (+ 2) {\bf{Refit}} an estimator using the best-found parameters on the whole dataset. \newline % Row Count 6 (+ 2) {\bf{Verbose}} controls the verbosity: the higher, the more messages.% Row Count 8 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{SVM parameters}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/aggialavura_1563379102_param.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.36 cm} x{2.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{GRID SEARCH}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{from sklearn.model\_selection import GridSearchCV}} & import GridSearch \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} param\_grid = \{\{\{nl\}\}'C': {[}0.1,1, 10, 100, 1000{]}, \{\{nl\}\}'gamma': {[}1,0.1,0.01,0.001,0.0001{]}, \{\{nl\}\}'kernel': {[}'rbf'{]}\} & parameters, see info \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} grid = GridSearchCV(\{\{nl\}\}SVC(),\{\{nl\}\}param\_grid,\{\{nl\}\}refit=True,\{\{nl\}\}verbose=3) & parameters, see info \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{grid.fit(X\_train,y\_train)} \tn % Row Count 12 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{grid.best\_params\_} \tn % Row Count 13 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{grid.best\_estimator\_} \tn % Row Count 14 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{grid\_predictions = grid.predict(X\_test)} \tn % Row Count 15 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{\seqsplit{print(confusion\_matrix(y\_test},grid\_predictions))} \tn % Row Count 16 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{\seqsplit{print(classification\_report(y\_test},grid\_predictions))} \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}