\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{DarioPittera (aggialavura)} \pdfinfo{ /Title (python-linear-regression-model.pdf) /Creator (Cheatography) /Author (DarioPittera (aggialavura)) /Subject (Python - Linear Regression Model Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{3AC990} \definecolor{LightBackground}{HTML}{F2FBF8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Python - Linear Regression Model Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{DarioPittera (aggialavura)} via \textcolor{DarkBackground}{\uline{cheatography.com/83764/cs/19917/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}DarioPittera (aggialavura) \\ \uline{cheatography.com/aggialavura} \\ \uline{\seqsplit{www}.dariopittera.com} \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 24th June, 2019.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{TO START}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{\# IMPORT DATA LIBRARIES \newline import pandas as pd \newline import numpy as np \newline \newline \# IMPORT VIS LIBRARIES \newline import matplotlib.pyplot as plt \newline import seaborn as sns \newline \%matplotlib inline \newline \newline \# IMPORT MODELLING LIBRARIES \newline from sklearn.model\_selection import train\_test\_split \{\{nobreak\}\} \newline from sklearn.linear\_model import LinearRegression \newline from sklearn import metrics} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.2 cm} x{2.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PRELIMINARY OPERATIONS}} \tn % Row 0 \SetRowColor{LightBackground} df = pd.read\_csv('data.csv') & read data \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} df.head() & check head df \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} df.info() & check info df \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} df.describe() & check stats df \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} df.columns & check col names \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.12 cm} x{2.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{VISUALISE DATA}} \tn % Row 0 \SetRowColor{LightBackground} sns.pairplot(df) & pairplot \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} sns.distplot(df{[}'Y'{]}) & distribution plot \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} sns.heatmap(df.corr(), annot=True) & heatmap with values \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.64 cm} x{3.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TRAIN MODEL}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-clone\}\} CREATE X and y}} -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} X = df{[}{[}'col1','col2',etc.{]}{]} & create df features \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} y = df{[}'col'{]} & create df var to predict \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-columns\}\} SPLIT DATASET}} -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} X\_train, X\_test, y\_train, y\_test = \{\{nl\}\} train\_test\_split(\{\{nl\}\}~~~~~~~~~~~~~~~~~~~~~~~~~X,\{\{nl\}\}~~~~~~~~~~~~~~~~~~~~~~~~~y, \{\{nl\}\}~~~~~~~~~~~~~~~~~~~~~~~~~test\_size=0.3) & split df in train and test df \tn % Row Count 30 (+ 24) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4.64 cm} x{3.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TRAIN MODEL (cont)}} \tn % Row 5 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-signal\}\} FIT THE MODEL}} -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-} \tn % Row Count 1 (+ 1) % Row 6 \SetRowColor{white} lm = LinearRegression() & instatiate model \tn % Row Count 2 (+ 1) % Row 7 \SetRowColor{LightBackground} lm.fit(X\_train, y\_train) & train/fit the model \tn % Row Count 4 (+ 2) % Row 8 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{\{\{fa-eye\}\} SHOW RESULTS}} -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-} \tn % Row Count 5 (+ 1) % Row 9 \SetRowColor{LightBackground} lm.intercept\_ & show intercept \tn % Row Count 6 (+ 1) % Row 10 \SetRowColor{white} lm.coef\_ & show coefficients \tn % Row Count 8 (+ 2) % Row 11 \SetRowColor{LightBackground} coeff\_df = pd.DataFrame\{\{nl\}\}(lm.coef\_,X.columns,columns={[}'Coeff'{]})* & create coeff df \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{pd.DataFrame}}: pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False). {\bf{data}} = values, {\bf{index}}= name index, {\bf{columns}}= name column. This could be useful just to interpret the coefficient of the regression.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.28 cm} x{2.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{MAKE PREDICTIONS}} \tn % Row 0 \SetRowColor{LightBackground} predictions = lm.predict(X\_test) & create predictions \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} plt.scatter(y\_test,predictions)* & plot predictions \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \seqsplit{sns.distplot((y\_test-predictions)},bins=50)* & distplot of residuals \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{scatter}}: this graph show the difference between actual values and the values predicted by the model we trained. It should resemble as much as possible a {\bf{diagonal line}}. \newline {\bf{distplot}}: this graph shows the distributions of the residual errors, that is, the difference between the actual values minus the predicted values; it should result in an as much as possible {\bf{normal distribution}}. If not, maybe change model!} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EVALUATION METRICS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{print('MAE:', {\bf{metrics.mean\_absolute\_error(y\_test, predictions)}})} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{print('MSE:', {\bf{metrics.mean\_squared\_error(y\_test, predictions)}})} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{print('RMSE:', {\bf{np.sqrt(metrics.mean\_squared\_error(y\_test, predictions))}}) \{\{nobreak\}\}} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{MAE}} is the easiest to understand, because it's the average error. \newline {\bf{MSE}} is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world. \newline {\bf{RMSE}} is even more popular than MSE, because RMSE is interpretable in the "y" units.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}