

linear algrebra Cheat Sheet by afalita6 via cheatography.com/171839/cs/36095/

Projections or Ax=b is inconsistent (cont)

regression [x.^0 ...] and y = given, step 3:

step 1: f(x) = [x][b], step 2: A =

Inverse of a matrix	
Triangular or diagonal matrix	1/diagonal entries
Permuted matrix	P transpose
Other	rref ([A eye()])

Multiplication	on of Matrix + angle
Way 1	A*B full multiplication
Way 2	[row A]*B
Way 3	[col A]*B
Way 3	B11*col(A1)+B21*col(A2)
Find entry 2,3	[row A2]*[columnB3] = 1 number
Rank 1 matrix	[a11*rowB1; a21*rowB1;a31*r- owB1] +
Angle	$\cos(\text{theta}) = (\mathbf{v}^*\mathbf{w})/(\mathbf{v} ^* \mathbf{w})$
Outer Product	[column1]*[1 # #] find numbers that work

Linear Tra	nsformation and dependency
Linear	Linearly independent if rref(A)
Indepe-	> #pivots = #row
ndent	
Linear	T (u + v) = T (u) + T (v), T (cu) =
transf-	cT (u), where c is a number. T is
ormation	one-to-one if $T(u)=0\Rightarrow u=0$ T is
(x and y	onto if $Col(T) = Rm$.
given)	

Projection	ns or Ax=b is inconsistent
formula	A'*A*xhat=A'*
Step 1	rref ([A'*A A'*b])
Step 2	xhat = last column of rref
Step 3	bhat = A*xhat> bhat is the vector spaned A closest to v and the projection of the vector onto subspace
Step 4	be = b - bhat> be is the vector perpendicular
Step 4	error vector/distance = norm (be) (1/sqr of components of b swuares)

	do LSE and find xhat which will be a,b,c
Ax = b	
Echelon form	Leading entries in every row are farther to the right than the row above. To do = elimination steps
Reduced Echelon form (rref)	echelon + columns of leading entries are all 0 except the entry which must be a 1. To do = eliminations steps down to right, then left to top
Ax=b	L = identity but a21 = $-\lambda$ 1, a31 =

- λ 2, a32 = - λ 3. U =

with LU

Ax = b (A a	nd b specified)
Echelon form	Leading entries in every row are farther to the right than the row above. To do = elimination steps
Reduced Echelon form (rref)	echelon + columns of leading entries are all 0 except the entry which must be a 1. To do = eliminations steps down to right, then left to top
Ax=b with LU	L = identity but a21 = $-\lambda$ 1, a31 = $-\lambda$ 2, a32 = $-\lambda$ 3. U = echelon. Then do Ly=b - given (solve for y), then Ux=y (solve for x)

give	ot 0 do rref([A b])), if one soln is on then add that in gen sol and do rref(A)
Eigenvector	s and Eigenvalues
v	eigenvector
λ	eigenvalue
Finding λ	1. Diag or triang = entries of diag. 2. $2x2 \text{ do } \lambda = m +- \text{ sqrt}$ $(m^2 - p)$, where $m = (a11+a-22)/2$, and $p = a11*a22 - a12*a21$
Finding v	rref ([A - λ *eye]) and find FV, pivots, and ss
Diagonali- zation	A = P*D*P^(-1), where P = [eigenvectors], D = diag(λ)
When can we diagon- alize*	Only when: square, real λ , and if repeated λ - look rref ([A - λ *eye]) and only 1 pivot.
A = Q*D*Q'	Q = special solutions form rref ([A - λ *eye]) for every λ , and then doing norm(q1) for all of them. D = diag(λ s)
ls λ an eigenvalue	Do rref ([A - λ *eye]) and has to be only 1 pivot (linearly dependent)
Positive definite	λs all positive
Semipo- sitive	λs all positive and at least a 0

Ax = b (A and b specified) (cont)

with

CR

tMaybe not full rank. C = columns of

A that have a pivot in R. R = rref

form. To find x --> using R to find FV, pivots, and special solutions (if

By afalita6

cheatography.com/afalita6/

Published 14th December, 2022. Last updated 14th December, 2022. Page 1 of 2. Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

definite

linear algrebra Cheat Sheet by afalita6 via cheatography.com/171839/cs/36095/

Eigenvectors and Eigenvalues (cont)

Indefinite λ at least one is negative

	Vector	Spac	ces ar	nd B	asis
--	--------	------	--------	------	------

Subspace	If u and v are in W , then u + v are in W , and cu is in W
Basis B	A linearly independent set such
for V	that Span (B) = V To show
	sthg is a basis, show it is
	linearly independent (rref(A)
	has NO FV) and spans(no row
	of 0's).

	01 0 3).
Row(A)	Space spanned by the rows of
	A: Row-reduce A and choose
	the rows that contain the
	pivots. $Row(A) = R^n$, dim =
	rank, Basis of Row = R in A =
	CR

Col(A)	Space spanned by columns of
	A: Row-reduce A and choose
	the columns of A that contain
	the pivots. Col(A) = R^m, dim =
	rank, Basis of Col = C in A =
	CD

	CR
Null(A) / Vector in Null	Solutions of Ax = 0. Row- reduce A. Null(A) = R^n, dim = n-rank, Basis of Null = rref(A), FV, pivots, special solutions
LeftNu- II(A)	Solutions of A'x = 0. Row- reduce A'. LeftNull(A) = R^m, dim = m-rank, Basis of LeftNull

	= rref(A'), FV, pivots, special solutions
Rank(A)	number of pivots

ls v in	do A*v and it needs to equal to
Null	vector 0
find v in	same vectors as in matrix
ColA	

Vector Spaces and Basis (cont)

Is v in col	is B*x=v consistent? do rref([B
space of B	v]) and see if consistent

Gram-Schmidt steps			
A	q1 = A(:,1)	Q = q1	xhat = (q1'*- A(:,2))/(- q1'*q1)
ahat = Q*xhat	q2 = A(:,2) - ahat	Q(:,2) = q2	Q(:,1) = 1/(q'1- *q1)*q1
Q(:,2) = 1/(q'2- *q2)*q2	Q = [Q(:,1) Q(:,2)]	R = Q'*A	if 3x3 keep going

Orthogonality

v and u	if $\mathbf{v}^*\mathbf{u} = 0$
are	
othogonal	

W⊥:	Set of v which are orthogonal
	to every w in W.

Orthogonal	If {u1 · · · uk } is a basis for W
projection:	, then orthogonal projection of
	y on W is: y^=(y·u1/u1*u1)+··-
	\cdot +(y·u1/uk*uk), and y - y^ is
	orthogonal to yˆ, shortest
	distance btw y and W is

	y-y^
Basis of	basis of Null(Mw)
Wı-	

Equalities	(RowA)' = NullA and vice
between	versa. (CoIA)'=LeftNullA and
basis	vice versa

By afalita6

cheatography.com/afalita6/

Published 14th December, 2022. Last updated 14th December, 2022. Page 2 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com