Inverse of a matrix	
Triangular or diagonal	1/diagonal
matrix	entries
Permuted matrix	P transpose
Other	$\operatorname{rref}([\operatorname{A~eye}()])$

Multiplication of Matrix + angle

Way $1 \quad A^{*}$ B full multiplication

Way 2 [row A]*B
Way 3 [col A]*B
Way $3 \quad \mathrm{~B} 11^{*} \mathrm{col}(\mathrm{A} 1)+\mathrm{B} 21^{*} \mathrm{col}(\mathrm{A} 2)$
Find entry [row A2]*[columnB3] $=1$
2,3 number
Rank 1 [a11*rowB1; a21*rowB1;a31*r-
matrix owB1] $+\ldots$

Angle $\quad \cos ($ theta $)=\left(v^{*} \mathbf{w}\right) /\left(\|\mathbf{v}\|\left\|^{*}\right\| \mathbf{w} \|\right)$
Outer [column1]*[1 \# \#] find numbers
Product that work

Linear Transformation and dependency	
Linear	Linearly independent if rref(A$)$--
Indepe-	--> \#pivots = \#row
ndent	
Linear	$\mathrm{T}(\mathrm{u}+\mathrm{v})=\mathrm{T}(\mathrm{u})+\mathrm{T}(\mathrm{v}), \mathrm{T}(\mathrm{cu})=$
transf-	$\mathrm{cT}(\mathrm{u})$, where c is a number. T is
ormation one-to-one if $\mathrm{T}(\mathrm{u})=0 \Rightarrow \mathrm{u}=0 \mathrm{~T}$ is (x and y onto if $\operatorname{Col}(\mathrm{T})=\mathrm{Rm}$. given	

Projections or $\mathrm{Ax}=\mathrm{b}$ is inconsistent

formula $A^{\prime *} A^{*} x h a t=A^{\prime *}$
Step $1 \quad \operatorname{rref}\left(\left[A^{\prime *} A A^{\prime *} b\right]\right)$
Step 2 xhat = last column of rref
Step 3 bhat = A*xhat --> bhat is the vector spaned A closest to v and the projection of the vector onto subspace

Step $4 b e=b-b h a t ~-->~ b e ~ i s ~ t h e ~ v e c t o r ~$ perpendicular
Step 4 error vector/distance = norm (be) (1/sqr of components of b swuares)

By afalita6
cheatography.com/afalita6/

Projections or $\mathrm{Ax}=\mathrm{b}$ is inconsistent (cont)

For	step 1: $f(x)=[x][b]$, step 2: $A=$
regression	$[x . \wedge 0 \ldots]$ and $y=$ given, step 3:
	do LSE and find xhat which
	will be a,b,c

$\mathrm{Ax}=\mathrm{b}$	
Echelon form	Leading entries in every row are farther to the right than the row above. To do = elimination steps
Reduced Echelon form (rref)	echelon + columns of leading entries are all 0 except the entry which must be a 1 . To do = eliminations steps down to right, then left to top
Ax=b with LU	$\mathrm{L}=$ identity but a21 $=-\lambda 1$, a31 $=$ $-\lambda 2, a 32=-\lambda 3 . U=$

$\mathrm{Ax}=\mathrm{b}$ (A and b specified $)$

Echelon Leading entries in every row form are farther to the right than the row above. To do = elimination steps
Reduced echelon + columns of leading Echelon entries are all 0 except the entry form which must be a 1 . To do =
(rref) eliminations steps down to right, then left to top
Ax=b $\quad L=$ identity but a21 $=-\lambda 1$, a31 $=$ with LU $\quad-\lambda 2, a 32=-\lambda 3 . U=$ echelon.

Then do Ly=b-given (solve for y), then $U x=y$ (solve for x)

$\mathrm{Ax}=\mathrm{b}$ (A and b specified) (cont)

Ax=b tMaybe not full rank. C = columns of with A that have a pivot in R. $R=$ rref CR form. To find x--> using R to find FV, pivots, and special solutions (if b not 0 do $\operatorname{rref}([A b])$), if one soln is given then add that in gen sol and just do $\operatorname{rref}(\mathrm{A})$

Eigenvectors and Eigenvalues

v	eigenvector
λ	eigenvalue
Finding λ	1. Diag or triang $=$ entries of diag. 2.2×2 do $\lambda=m+$ sqrt $\left(m^{\wedge} 2-p\right)$, where $m=(a 11+a-$ 22)/2, and $p=a 11^{*} a 22$ a12*a21
Finding v	$\operatorname{rref}\left(\left[\mathrm{A}-\lambda^{*}\right.\right.$ eye]) and find FV, pivots, and ss
Diagonalization	$\mathrm{A}=\mathrm{P}^{*} \mathrm{D}^{*} \mathrm{P}^{\wedge}(-1)$, where $\mathrm{P}=$ [eigenvectors] , $\mathrm{D}=\operatorname{diag}(\lambda)$
When can we diagonalize*	Only when: square, real λ, and if repeated λ - look rref ([A - λ^{*} eye]) and only 1 pivot.
$A=$ Q*D*Q'	$Q=$ special solutions form rref ([A - λ^{*} eye]) for every λ, and then doing norm(q1) for all of them. $\mathrm{D}=\operatorname{diag}(\lambda \mathrm{s})$
Is λ an eigenvalue	Do $\operatorname{rref}\left(\left[\mathrm{A}-\lambda^{*}\right.\right.$ eye]) and has to be only 1 pivot (linearly dependent)
Positive definite	λs all positive
	λs all positive and at least a 0

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Eigenvectors and Eigenvalues (cont)

Indefinite $\quad \lambda$ at least one is negative

Vector Spaces and Basis

Subspace If u and v are in W, then $u+v$ are in W, and cu is in W
Basis B A linearly independent set such for $V \quad$ that Span $(B)=V$ To show sthg is a basis, show it is linearly independent (rref(A) has NO FV) and spans(no row of 0 's).
Row(A) Space spanned by the rows of A: Row-reduce A and choose the rows that contain the pivots. $\operatorname{Row}(A)=R^{\wedge} n, \operatorname{dim}=$ rank, Basis of Row $=R$ in $A=$ CR
$\operatorname{Col}(A) \quad$ Space spanned by columns of A: Row-reduce A and choose the columns of A that contain the pivots. $\operatorname{Col}(A)=R^{\wedge} m, \operatorname{dim}=$ rank, Basis of $\mathrm{Col}=\mathrm{C}$ in $\mathrm{A}=$ CR
$\operatorname{Null}(A) / \quad$ Solutions of $A x=0$. Row-
Vector in reduce $A . \operatorname{Null}(A)=R^{\wedge} n, \operatorname{dim}=$
Null $\quad n$-rank, Basis of Null $=\operatorname{rref}(\mathrm{A})$, FV, pivots, special solutions

LeftNu- Solutions of $A^{\prime} x=0$. RowII(A) reduce A^{\prime}. LeftNull $(A)=R^{\wedge} m$, $\operatorname{dim}=m$-rank, Basis of LeftNull $=\operatorname{rref}\left(A^{\prime}\right), F V$, pivots, special solutions
$\operatorname{Rank}(A)$ number of pivots
Is \mathbf{v} in do $A^{*} v$ and it needs to equal to
Null vector 0
find v in same vectors as in matrix
ColA

By afalita6
cheatography.com/afalita6/

Vector Spaces and Basis (cont)			
Is v in col space of B	is $B^{*} x=$ v]) and	onsiste e if con	? do $\operatorname{rref}([B$ stent
Gram-Schmidt steps			
A	$\begin{aligned} & q 1= \\ & A(:, 1) \end{aligned}$	$\begin{aligned} & Q= \\ & q 1 \end{aligned}$	xhat $=$ (q1'*- A(:,2))/(- q1'*q1)
ahat $=$ Q*xhat	$\begin{aligned} & \text { q2 = } \\ & \text { A(: }: 2)- \\ & \text { ahat } \end{aligned}$	$\begin{aligned} & Q(:, 2) \\ & =q 2 \end{aligned}$	$\begin{aligned} & Q(:, 1)= \\ & 1 /\left(q^{\prime} 1-\right. \\ & * q 1)^{*} q 1 \end{aligned}$
$\begin{aligned} & Q(:, 2)= \\ & 1 /\left(q^{\prime} 2-\right. \\ & \text { *q2)*q2 } \end{aligned}$	$\begin{aligned} & Q=[\\ & Q(:, 1) \\ & Q(:, 2)] \end{aligned}$	$\begin{aligned} & R= \\ & Q^{\prime *} A \end{aligned}$	if 3×3 keep going

Orthogonality

v and $u \quad$ if $v^{*} u=0$

are

othogonal
W_{\perp} : Set of v which are orthogonal to every w in W.

Orthogonal If $\{u 1 \cdots u k\}$ is a basis for W projection: , then orthogonal projection of y on W is: $y^{\wedge}=\left(y \cdot u 1 / u 1^{*} u 1\right)+\cdot \cdot-$ $+\left(y \cdot u 1 / u k^{*} u k\right)$, and $y-y^{\wedge}$ is orthogonal to y^{\wedge}, shortest distance btw y and W is $\left\|y-y^{\wedge}\right\|$

| Basis of basis of $\operatorname{Null}(\mathrm{Mw})$
 $\mathbf{W}_{\perp}:$
 Equalities $(\text { RowA })^{\prime}=$ NullA and vice
 between versa. $(\text { CoIA })^{\prime}=$ LeftNullA and
 basis vice versa |
| :--- | :--- |

Published 14th December, 2022.
Last updated 14th December, 2022.
Page 2 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

