Cheatography

linear algrebra Cheat Sheet	
by afalita6 via cheatography.com/171839/cs/36095	5/

Inverse of a matrix	
Triangular or diagonal matrix	1/diagonal entries
Permuted matrix	P transpose
Other	rref ([A eye()])

Multiplicatio	n of Matrix + angle
Way 1	A*B full multiplication
Way 2	[row A]*B
Way 3	[col A]*B
Way 3	B11*col(A1)+B21*col(A2)
Find entry	[row A2]*[columnB3] = 1
2,3	number
Rank 1	[a11*rowB1; a21*rowB1;a31*r-
matrix	owB1] +
Angle	$\cos(\text{theta}) = (\mathbf{v}^* \mathbf{w}) / (\mathbf{v} ^* \mathbf{w})$
Outer	[column1]*[1 # #] find numbers
Product	that work

Linear Tra	nsformation and dependency
Linear	Linearly independent if rref(A)
Indepe-	> #pivots = #row
ndent	
Linear	T (u + v) = T (u) + T (v), T (cu) =
transf-	cT (u), where c is a number. T is
ormation	one-to-one if T(u)=0 \Rightarrow u=0 T is
(x and y	onto if Col(T) = Rm.
given)	

Projection	ns or Ax=b is inconsistent
formula	A'*A*xhat=A'*
Step 1	rref ([A'*A A'*b])
Step 2	xhat = last column of rref
Step 3	bhat = A*xhat> bhat is the vector spaned A closest to v and the projection of the vector onto subspace
Step 4	be = b - bhat> be is the vector perpendicular
Step 4	error vector/distance = norm (be) (1/sqr of components of b swuares)

Projections or Ax=b is inconsistent (cont)

For	step 1: f(x) = [x][b], step 2: A =
regression	$[x.^0]$ and y = given, step 3:
	do LSE and find xhat which
	will be a,b,c

Ax = b	
Echelon form	Leading entries in every row are farther to the right than the row above. To do = elimination steps
Reduced Echelon form (rref)	echelon + columns of leading entries are all 0 except the entry which must be a 1. To do = eliminations steps down to right, then left to top
Ax=b with LU	L = identity but a21 = - λ 1, a31 = - λ 2, a32 = - λ 3. U =

Ax = b (A a	and b specified)
Echelon form	Leading entries in every row are farther to the right than the row above. To do = elimination steps
Reduced Echelon form (rref)	echelon + columns of leading entries are all 0 except the entry which must be a 1. To do = eliminations steps down to right, then left to top
Ax=b with LU	L = identity but a21 = $-\lambda$ 1, a31 = - λ 2, a32 = $-\lambda$ 3. U = echelon. Then do Ly=b - given (solve for y), then Ux=y (solve for x)

Ax = b (A and b specified) (cont)

Ax=b	tMaybe not full rank. C = columns of
with	A that have a pivot in R. R = rref
CR	form. To find x> using R to find
	FV, pivots, and special solutions (if
	b not 0 do rref([A b])), if one soln is
	given then add that in gen sol and
	just do rref(A)

Eigenvectors	s and Eigenvalues
v	eigenvector
λ	eigenvalue
Finding λ	1. Diag or triang = entries of diag. 2. 2x2 do λ = m +- sqrt (m^2 - p), where m = (a11+a- 22)/2, and p = a11*a22 - a12*a21
Finding v	rref ([A - λ*eye]) and find FV, pivots, and ss
Diagonali- zation	A = P*D*P^(-1), where P = [eigenvectors], D = diag(λ)
When can we diagon- alize*	Only when: square, real λ , and if repeated λ - look rref ([A - λ^* eye]) and only 1 pivot.
A = Q*D*Q'	Q = special solutions form rref ([A - λ^* eye]) for every λ , and then doing norm(q1) for all of them. D = diag(λ s)
ls λ an eigenvalue	Do rref ([A - λ^* eye]) and has to be only 1 pivot (linearly dependent)
Positive definite	λs all positive
Semipo- sitive definite	λs all positive and at least a 0

By afalita6

cheatography.com/afalita6/

Published 14th December, 2022. Last updated 14th December, 2022. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

linear algrebra Cheat Sheet by afalita6 via cheatography.com/171839/cs/36095/

Eigenvector	rs and Eigenvalues (cont)
Indefinite	$\boldsymbol{\lambda}$ at least one is negative
Vector Space	ces and Basis
Subspace	If u and v are in W , then u + v are in W , and cu is in W
Basis B for V	A linearly independent set such that Span (B) = V To show sthg is a basis, show it is linearly independent (rref(A) has NO FV) and spans(no row of 0's).
Row(A)	Space spanned by the rows of A: Row-reduce A and choose the rows that contain the pivots. Row(A) = R^n, dim = rank, Basis of Row = R in A = CR
Col(A)	Space spanned by columns of A: Row-reduce A and choose the columns of A that contain the pivots. Col(A) = R^m, dim = rank, Basis of Col = C in A = CR
Null(A) / Vector in Null	Solutions of Ax = 0. Row- reduce A. Null(A) = R^n, dim = n-rank, Basis of Null = rref(A), FV, pivots, special solutions
LeftNu- II(A)	Solutions of A'x = 0. Row- reduce A'. LeftNull(A) = R^m, dim = m-rank, Basis of LeftNull = rref(A'), FV, pivots, special solutions
Rank(A)	number of pivots
ls v in Null	do A*v and it needs to equal to vector 0
find v in ColA	same vectors as in matrix

Vector Spaces and Basis (cont)			
ls v in col space of B	is B*x=v consistent? do rref([B v]) and see if consistent		
One we Oak we	talk atoms		
Gram-Schm	lidt steps		
A	q1 = A(:,1)	Q = q1	xhat = (q1'*- A(:,2))/(- q1'*q1)
ahat = Q*xhat	q2 = A(:,2) - ahat	Q(:,2) = q2	Q(:,1) = 1/(q'1- *q1)*q1
Q(:,2) = 1/(q'2- *q2)*q2	Q = [Q(:,1) Q(:,2)]	R = Q'*A	if 3x3 keep going
Orthogonali	ty		
v and u are othogonal	if v * u = 0		
are		which are	e orthogonal
are othogonal	Set of v v to every If {u1 · · · · , then ort y on W is ·+(y·u1/u orthogon	which are w in W. uk } is a thogonal s: y^=(y·u	basis for W projection of 1/u1*u1)+ id y - y^ is shortest
are othogonal W⊥: Orthogonal	Set of v to every If {u1 ···· , then ord y on W is ·+(y·u1/u orthogon distance	which are w in W. w uk } is a thogonal s: y^=(y·u k*uk), an al to y^, s btw y an	basis for W projection of 1/u1*u1)+ id y - y^ is shortest

C

By afalita6

cheatography.com/afalita6/

Published 14th December, 2022. Last updated 14th December, 2022. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com