Cheatography

Internet Basics

What is the Internet

- Collection of computer networks that use a
protocol to exchange data

- IETF (Internet Enforcement Task Force):
Internet protocol standards

IP (Internet Protocol): Simple protocol for
exchanging data between computers

TCP: Adds multiplexing and reliability on top
of IP

- Multiplexing: Multiple programs using
same IP address

- Reliability: Guaranteed, ordered and
error-checked delivery

DNS (Domain Name Server): Set of servers
that map(translate) written names to ip
addresses

URL (Uniform resource locator): Identifies
the path to a document on the web server
HTTP (Hypertext transport protocol): Set of
commands understood by a web server and
sent from a browser

HTTP Commands:

- GET filename: Download

- POST filename: send a web form
response

- PUT filename: upload

By Abisco
cheatography.com/abisco/

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

Understanding Threats: Defacement, Infilt-
ration, Phishing (Spoofed site that looks
real, retrieve login credentials), Pharmi-
ng(Like phishing, get user to enter sensitive
data into spoofed site, no conscious action
required by the victim), DNS Cache
Poisoning (Attacker is able to compromise
DNS tables so as to redirect legitimate URL
to their spoofed site), DNS translates URL
to IP Addresses

SQL Injection:Untrusted input inserted into
query or command

Solutions: Defence in Depth, Whitelisting
over Blacklisting, Input validation and
Escaping, Use prepared statements and
Bind variables

Mitigation: Prevent schema and information
leaks, Limit privileges (defence in depth),
Encrypt sensitive data stored in Database,
Harden DB server and Host O/S, Apply
input validation

Password Protection: Straw man Proposal,
Salting(Include additional info in hash),
Honeypots(Simple username/password
combos as 'honey' to attract attackers),
Aging passwords(Encourage/require users
to change passwords every so often)

Security (cont)

HTTP s stateless: Cookies(-Browser can
refuse cookies, -size limit/ expiration
policy), Hidden Variables (-Following
hyperlinks causes a loss of state, -Current
submitted page represents current state
independent of what was done previously),
URL Rewritting (-Current submitted page
represents current state independent of
what was done previously)

Web Security: Same Origin Policy (A
webpage may include some JavaScripts to
access its DOM and send AJAX msgs to its
backend, try to steal information from
another website), XSSI (Cross-site script
inclusion, making sure scripts aren't
dynamically created with sensitive data. Do
not support GET requests for scripts
returning URLS) XSS (Enables attackers to
inject scripts into webpages viewed by
other users, which can steal cookies,
change appearances of web sites...Do
validation and HTTP only option for
cookies), XSRF (Makes a user to submit
requests on behalf of the attacker. Protec-
tion: Give a secret token to a user and tell
the user to submit it along with cookie on
following requests).

Published 18th April, 2016.
Last updated 13th May, 2016.
Page 1 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
http://www.cheatography.com/abisco/
https://readable.com

Cheatography

Web Performance

HTML Techniques: Lazy load content, Use
idle time to pre-load content, Batch DOM

updates, Set image sizes before loading,
Reduce DOM depth

CSS Techniques: Stylesheets at the top,
Remove unused CSS Rules, Avoid
universal selectors, Don't abuse border-
radius & transform, Prefer selectors with
native JS Support

Network Techniques: Make fewer HTTP
requests, Content delivery network, Split
resources across servers -load balance, But
avoid too many DNS lookups

Performance

Load Testing: Process of putting demand on

a system or device and measuring its
response. Performed to determine a
system's behaviour under both normal and
anticipated peak load conditions.

Locust.io

+: Write simple python code to simulate a
user behaviour

+: Handled thousands of users on a single
machine

-: Results are downloadable in CSV format
Back-end Tips: Increase parallelism of
node.js, Caching, DB Index

By Abisco
cheatography.com/abisco/

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

OUR ASSIGNMENT

var express = requir e (' exp -
ress');
var app = express();

app.ge t(' /ne wre cipe',
functi on(req, res) {
var User =
requir e('../ app /mo del s/u -
ser');
res.re nde r(' -
new rec ipe.ejs', { message:
'loggedin' });
1)
app.po st('/n ewr -
ecipe', functi on(req, res) {
var newRecipe
= new Recipe();
new Rec -
ipe.au thor id = req.us er. id;
new Rec -
ipe.name = reqg.bo dy.n ame;
new Rec -
ipe.de scr iption = reqg.bo -
dy.d es cri ption;
res.re nde -
r(' new rec ipe.ejs', { message:
'done'}) ;
});
EXAMPLE OF DEALING WITH A SIMPLE
LOGIN FORM
HTML CODE
<form action ="f orm su bmi -
tte d.php” method ="G ET”>
<hl >Login
Form</ hl>
<la bel>
Login: </1 abe 1>
<input type=" text” name=" log -
in” ><b r>
<la bel>
Password: </1 abe 1>

”

<input type="” pas sword”

”

name=" pas swo rd” ><b r>

Published 18th April, 2016.
Last updated 13th May, 2016.
Page 2 of 7.

Express (cont)

> <button type="submit” >Log In </b-
utton>

</form>

SERVER SIDE CODE

var express = require(‘express’);

var router = express.Router();
router.get(‘form_submitted.php®’, functi-
on(req, res){

if (req.query.login == req.query.password){
res.send('Login Successful’);

}else {

res.send(‘Error: Login Failed’);

}

P&

CSS Pre-processor: Converts code written

in a preprocessed language in css
Allows us to do:

- Don't repeat yourself principle

- Maintainability

- Readability

- Natural extension

Less

- Easier to transition from CSS

- Resembles CSS

- Syntax not as jarring as SASS

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
http://www.cheatography.com/abisco/
https://readable.com

Cheatography

Less/Sass (cont)

- Newer Than SASS, inspired by it

SASS

- Syntax is quite different from CSS

- Symbols used are similar to bash

- More functionality/capability than LESS
- Complex tasks are more pragmatic than
LESS

Databases

RDBMS (Relational Database Management

System): Has Concurrent access, Fault
Tolerance, Data Integrity, Scalability
NoSQL: Flexible Schema, Cheaper to
setup, massive scalability (Integrated
Caching and Auto sharing), relaxed consis-
tency BUT no declarative query language,
and fewer guarantees due to ReCo.

Session and Cookies

HTTP Is stateless

- Simply allows a browser to request a
single document from web server

- It remembers nothing between invoca-
tions, thus short lived

- When we started using web applications,
we started ad hoc states

*Adding state to HTTP

- Client Mechanisms:

By Abisco
cheatography.com/abisco/

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

Session and Cookies (cont)

1. Cookies Size limit/ expiration policy,
browser can refuse

2. Hidden variables hyperlinks leads to loss

of state

3. URL Rewriting Current submitted page
represents current state independent of
what was done previously

4. Local Storage

- Server Mechanisms

1. Sessions (Persistent Storage) - In a file
or database

Canvas Coding

ASSIGNMENT CODE

var canvas = docume nt.g et -
Ele men tBy Id(" gam e");
var context = canvas.ge tCo -
nte xt(" 2d");

doc ume nt.g et Ele -

men tBy Id(" mai n").i nn -
erHTML = " <canvas id='"game "'
width = 400 height = '"60 0"'>

</c anv as> ;
canvas = docume nt.g et Ele -

men tBy Id(" gam e");

// Add Mouse down listener
canvas.ad dEv ent Lis ten -
er(" mou sed own ", mouseD -
idP res sDown, false);
canvas.ad dEv ent Lis ten -
er(" mou seu p", mouseD idR -

elease, false);

context = canvas.ge tCo nte -

xt(" 2d");

Canvas Coding (cont)

> function mouseDidPressDown(event) {
var WIDTH = HEIGHT * 0.65;
var mousePosition = mousePositionInCan-
vas(event.clientX, event.clientY);
/IDO WHATEVER with mousePosi-
tion.x and mousePosition.y
}
EXAM CODE
<body>
<canvas id='myCanvas' width="500"

height='400"> Canvas not supported </c-
anvas>

</body>
</html>
<script>

var canvas = document.getElementBy-
Id('myCanvas');

var context = canvas.getContext("2d");

function getMousePos(canvas, evt) {

var rect = canvas.getBoundingClient-

Rect();
return {
x: evt.clientX - rect.left * (canvas.width /
rect.width),
y: evt.clientY - rect.top * (canvas.height /
rect.height)
i

}

Published 18th April, 2016.
Last updated 13th May, 2016.
Page 3 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
http://www.cheatography.com/abisco/
https://readable.com

Cheatography

Canvas Coding (cont)

> canvas.addEventListener('click’, functi-
on(evt){
var temp = getMousePos(canvas, evt);
context.translate(temp.x, temp.y);
drawCoolShape(context);
context.translate(-temp.x, -temp.y);
}, false);
</script>

AngularJS

Why

- Lightw eight, free

- Modularity

- Reusable components

What we used previously

- Allows for DOM manipu lation

- Does not provide structure to
your code

<div ng-app ="">

<p> Input something in the input
box:</ p>
<p>Name <input type="t ext "
ng-mod el= " nam e" placeh old -

er= " Enter name here">< /p>

<hl >Hello {{name}}</hl>

By Abisco
cheatography.com/abisco/

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

XML vs JSON

Some Basics

- XML is easy to read and make
automation easy, but bulky
structure makes files large, can
be hard to structure data into
good xml format

- Javascript XML has properties
and methods to structure well

Something in XML

<menu id=" fil e" wvalue= " Fil -
e">
<po pup>
<me nuitem value= " -
New " onclic k="C rea teN ewD -
oc()" />
<me nuitem value= " -
Ope n" onclic k="O pen Doc ()"
/>
<me nuitem value= " -
Clo se" onclic k="C los eDo -
c() " />
</p opu p>
</m enu>
Same in JSON
{"me nu": {
"oid": " fil e",
" val ue": " Fil e",
" pop up": {
" men uit em": [
{"va lue ": " -
New ", " onc lic k": " Cre ate -
New Doc ()"},
{"va lue ": " Ope -
n", " onc lic k": " Ope nDo -
c() "},
{"va lue ": " Clo -
se", " onc lic k": " Clo seD -
oc()"}

Published 18th April, 2016.
Last updated 13th May, 2016.
Page 4 of 7.

XML vs JSON (cont)

>}

Navigating JSON

var data = JSON.Parse(file)

var fileld = data.menu.id;

var firstMenu = data.menu.popup.menui-
tem[0];

What is it: Testing for Node

Example:

var assert = requir e(' ass -
ert');

var calc = requir e('./c -

alc.js');
descri be('Ca lcu lator Tests',
function() {

it ('re turns 1+1=2', functi -
on(done) {

assert.eq ual (ca lc.a dd(i, 1),

it ('re turns 2*2=4"', functi -

on(done) {

assert.eq ual (ca lc.m ul(2,

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
http://www.cheatography.com/abisco/
https://readable.com

Cheatography

Asynchronous Javascript and XML:

Not a programming language, Jjust
a way of using Javascript,
Downloads data from server in
background, Avoids dynamically
updating a page without making
the user wait

XMLHtt pre quest (and why it
sucks) : Javascript includes an
XMLHtt pre quest object that can
fetch files from a web server,
BUT clunky and browser incomp -
ati bil ities

JQuery: Cross browser,
simplifies javascript

S(docu men t).r ea dy(fun cti -

on () {
S("p ").c lic k(f unc -
tion () {
$(t his).h -
ide();

Simple Web Request

-

~.
-
~.

Basic Structure:

Request: GET /HTTP/1.1

Reply:HTTP/1.1 301 moved permanently
Big Picture

- Client-server model: A client process
wants to talk to a server process

- DNS Lookup: Client must find server

- Ports: Clients must find service on server
- Finally establish a connection so they can
talk

Types of connection (TCP/UDP)

By Abisco
cheatography.com/abisco/

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

Simple Web Request (cont)

- Connection oriented model: Use Transm-
ission control protocol (TCP)

- Connectionless Model: Uses user
datagram protocol (UDP)

GIT

Difference between CVC and DVC:

- Centralized Version Control: Repository
goes straight to each working copy/pc

- Distributed Version Contol: Each computer
has it's own repository, which can pull and
push to server repository. WHAT GIT USES
Working with remote repository

- git remote abu link Creates a reference
called abu to the link

- git clone https://blah.com/csc309.git clone
remote rep and create local one

- git fetch mashiyat Download changes
from mashiyat's repository to my local
repository

- git pull mashiyat Downloaded changes
and merges them fo my local repository

- git push origin master

- git push mashiyat master

- git merge blah Merge changes made in
blah branch to current branch

Published 18th April, 2016.
Last updated 13th May, 2016.
Page 5 of 7.

HTML5 and CSS3

HTMLS5: New features

- Semantic elements and markups

- Audio and video support

- Canvas

- Drag and drop

- Local data storage: Unlike cookies, the
storage limit is far larger

CSS3

- Allows a lot of new things, such as
border-radius

- Viewport (vary with device size)
Responsive Web Design

@media (max-width: 600px) { .facet_si-
debar { display: none; } }

Example of how to style the media for
phones

Web Architectures

Data independence in Rel. DBMS

- Logical Independence: The Ability to
change the logical schema without
changing the external schema or applic-
ation programs.

- Physical Independence: The ability to
change the physical schema without
changing the logical schema
Significance of Tiers

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
https://blah.com/csc309.git
http://www.cheatography.com/abisco/
https://readable.com

Cheatography

Web Architectures (cont)

- N-Tier architectures try to separate the
components into different tiers/layers. Tier:
physical separation, Layer: logical
separation

- 1-Tier architecture: All 3 layers on the
same machine - All code and processing
kept on a single machine

- 2-Tier Architecture: Database runs on
server

- 3-Tier Architecture: Each layer can potent-
ially run on a different machine

MVC Design Pattern: Chang look and feel
without changing the core/logic, Maintain
multiple views of the same data

MongoDB Schema

var mongoose =
require ('mongoose') ;
var bcrypt = requir e(' bcr -
ypt -no dejs');

var userSchema = mongoo se.S -

ch ema ({

fir stname :
String,

las tname :
String,

pas sword :
String,

pho nen umber :
Number,

fav cu isine :
[String],

admin : Boolean
)

// generating a hash

By Abisco

cheatography.com/abisco/

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

MongoDB Schema (cont)

> userSchema.methods.generateHash =
function(password) {

return berypt.hashSync(password,
berypt.genSaltSync(8), null);
B
/I checking if password is valid
userSchema.methods.validPassword =
function(password) {

return berypt.compareSync(password,
this.password);
%
module.exports = mongoose.model('User’,
userSchema);

REST API Code

var requestBody = '';
var http = requir e("h ttp "),
url = requir e("u rl"),
path = requir e("p ath "),
fs = requir e("f s");
PORT = 3000;

function handle Req ues t(r -
equest, response) {
var rest = url && url.pa rse -
(re que st.u rl).p ath name;
var filePath = dirname +
reques t.url;

var favs = fs.rea dFi leS ync -
('j s/f avs.js on');

if (choos eFi le()) return;

Published 18th April, 2016.
Last updated 13th May, 2016.
Page 6 of 7.

REST API Code (cont)

> //[For each of the possible return paths,
send the json file

if (request.url == "/allTweets") {
returnTweets();

} else if (request.url == "/allUsers") {
returnTweets();

}

/[Function to return Json

function returnJson(json) {
response.writeHead(200);
response.end(JSON.stringify(json, null, 8));
}

/[Provide the file in accordance with the
function returnFile(path, type) {

var file = fs.readFileSync(path, 'utf8');
response.writeHead(200, type);
response.end(file);

}

function chooseFile() {

if (path.extname(filePath) ==".js') {
returnFile(filePath, {"Content-Type": "text/j-
avascript"});

return true;

}
if (rest.length <= 1) {

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
http://www.cheatography.com/abisco/
https://readable.com

CSC309H Cheat Sheet
by Abisco via cheatography.com/27378/cs/7925/

Cheatography

REST API Code (cont)

> returnFile("./index.html’, {"Content-Type":
"text/html"});

return true;

}

return false;

}

}

http.createServer(handleRequest).listen-
(PORT);

console.log("Nodejs Server running at
http://127.0.0.1:" + PORT +"/");

JQuery Selecting Code

function change () {

$("b ody ").f ind -
("*").hi de();
var images = $("b -
ody ").f ind ("im g");
ima ges.pa ren ts().s -

how () 7

ima ges.sh ow();

By Abisco Published 18th April, 2016. Sponsored by Readable.com
g cheatography.com/abisco/ Last updated 13th May, 2016. Measure your website readability!
' Page 7 of 7. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/abisco/
http://www.cheatography.com/abisco/cheat-sheets/csc309h
http://127.0.0.1
http://www.cheatography.com/abisco/
https://readable.com

	CSC309H Cheat Sheet - Page 1
	Internet Basics
	Security

	CSC309H Cheat Sheet - Page 2
	Web Perfor­mance
	Express
	Perfor­mance
	Less/Sass

	CSC309H Cheat Sheet - Page 3
	Databases
	Canvas Coding
	Session and Cookies

	CSC309H Cheat Sheet - Page 4
	XML vs JSON
	Mocha
	AngularJS

	CSC309H Cheat Sheet - Page 5
	AJAX
	HTML5 and CSS3
	GIT
	Web Archit­ectures
	Simple Web Request

	CSC309H Cheat Sheet - Page 6
	REST API Code
	MongoDB Schema

	CSC309H Cheat Sheet - Page 7
	JQuery Selecting Code

