Relations

DEFINITION

A relation R, from a non-empty set A to another non-empty set B is mathematically as an subset of $A \times B$. Equivalently, any subset of $A \times B$ is a relation from A to B. Thus, R is a relation from A to $B \hat{U} R i$ $A \times B$ ̂̂ $\operatorname{Ri}\{(a, b): a i ̂ A, b i ̂ B\}$

DOMAIN OF A RELATION

Let R be a relation from A to B. The domain of relation R is the set of all those elements a î A such that $(a, b) \hat{i} R$ " b î B. Thus, Dom. $(\mathrm{R})=\{\mathrm{a}$ Î A : (a, b) Î R " $b \hat{I} B\}$. That is, the domain of R is the set of first components of all the ordered pairs which belong to R.

RANGE OF A RELATION

Let R be a relation from A to B. The range of relation R is the set of all those elements b î B such that $(a, b) i ̂ R " a i ̂ A$. Thus, Range of $R=\{b \hat{i ̂} B:(a, b) \hat{\imath} R " a \hat{l}$ $A\}$. That is, the range of R is the set of second components of all the ordered pairs which belong to R.

CO-DOMAIN OF A RELATION

Let R be a relation from A to B. Then B is called the co-domain of the relation R. So we can observe that co-domain of a relation R from A into B is the set B as a whole.

REFLEXIVE RELATION

A relation R defined on a set A is said to be reflexive if a R a " a î Ai.e., (a, a) î R" aîA

SYMMETRIC RELATION

A relation R defined on a set A is symmetric if $(a, b) \hat{I} R p(b, a) \hat{\imath} R " a, b \hat{\imath}$ A i.e., aRb 户 bRa (i.e., whenever aRb then bRa).

TRANSITIVE RELATION

A relation R on a set A is transitive if (a, b) $̂$ R and (b, c) î R b (a, c) î Ri.e., aRb and bRc p aRc .

By Aafiya

cheatography.com/aafiya/

Relations (cont)

EQUIVALENCE RELATION

Let A be a non-empty set, then a relation R on A is said to be an equivalence relation if (i) R is reflexive i.e., (a, a) î R " a 1 A i.e., aRa. (ii) For Let R is symmetric i.e., (a, b) Î R P (b, a) î R"a, b î A i.e., $a R b P b R a$. (iii) R is transitive i.e., $(a, b) \hat{l}$ R and (b, c) ̂̂RP (a, c) ÎR"a, b, c ÎA i.e., aRb and bRc P aRc

Functions

One-one function (Injective function or Injection)

A function $f: A ® B$ is one-one function or injective function if distinct elements of A have distinct images in B. Thus, $f: A$ $® B$ is one-one $\hat{U} f(a)=f(b) P a=b, " a, b$ î $A \hat{U} a \neq b \triangleright f(a) \neq f(b) " a, b \hat{I} A$.

Onto function (Surjective function or Surjection)

A function f : $A ® B$ is onto function or a surjective function if every element of B is the f - image of some element of A. That implies $f(A)=B$ or range of f is the co-domain of f. Thus, f : A © B is onto U $f(A)=B$ i.e., range of $f=c o$-domain of f.

One-one onto function (Bijective function or Bijection)

A function $f: A ® B$ is said to be one-one onto or bijective if it is both one-one and onto i.e., if the distinct elements of A have distinct images in B and each element of B is the image of some element of A.

Matrices

PROPERTIES OF TRANSPOSE OF MATRICES :
(i) $(A+B) T=A T+B T$
(ii)(AT)T = A
(iii)(kA)T $=k A T$, where k is any constant
(iv) (AB)T = BT AT (v) (ABC)T = CT BT AT

Not published yet.
Last updated 12th December, 2022.
Page 1 of 1 .

Sponsored by Readable.com

 Measure your website readability! https://readable.com