\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{24liqinhan} \pdfinfo{ /Title (unit-3-cellular-genetics.pdf) /Creator (Cheatography) /Author (24liqinhan) /Subject (Unit 3 Cellular Genetics Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{81CCC7} \definecolor{LightBackground}{HTML}{EFF8F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Unit 3 Cellular Genetics Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{24liqinhan} via \textcolor{DarkBackground}{\uline{cheatography.com/184795/cs/38603/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}24liqinhan \\ \uline{cheatography.com/24liqinhan} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 10th May, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cellular Energy}} \tn % Row 0 \SetRowColor{LightBackground} Potential Energy & stored energy \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} chemical energy & energy stored in chemical bonds, more bonds, greater potential energy \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} Kinetic Energy & moves \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} heat & thermal energy is transfered from one object to another \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} light & another form of energy \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} first law of thermodynamics/law f conservation & energy cannot be destroyed or created \tn % Row Count 14 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{exergonic/exothermic}} & energy is released during the chemical reaction, ΔG is \textless{} 0 (negative), reaction is spontaneous. \tn % Row Count 19 (+ 5) % Row 7 \SetRowColor{white} {\bf{endergonic/endothermic}} & energy is absorbed during chemical reaction, ΔG is \textgreater{} 0 (positive) \tn % Row Count 23 (+ 4) % Row 8 \SetRowColor{LightBackground} complex cellular reactions & exergonic and endergonic chemical reactions are coupled. \tn % Row Count 26 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{inhibition of enzymatic reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Enzymes that have already been produced are regulated by competitive or noncompetitive inhibition} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{competitive inhibition}} & compeitive inhibitors, by preventing or limiting the substrate from binding to the enzyme. \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Noncompetive \seqsplit{Inhibition/allosteric} regulators}} & binding of the inhibitor to the alternative site, changing the shape of the enzye, inhibiting the enzyme from catalyzing substrate into product. {\bf{Feedback inhibition}}: the end product of the pathway is the allosteric inhibitor for an enzyme that catalyzes an early step in the pathway. (graph) \tn % Row Count 22 (+ 15) % Row 3 \SetRowColor{white} {\bf{Cooperativity}} & type of allosteric activation, cause the enzyme to atbilize in active form, amplifying response of the enzyme. (graph) \tn % Row Count 28 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Photosynthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{light energy is converted to chemical bond energy, and carbon is fixed into organic compounds.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{\seqsplit{6⁢CO2+12⁢H2O→lightC6⁢H12⁢O6+6⁢H2+6⁢O2}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Photosynthesis is a reduction reaction because CO2 gains hydrogen from water.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{two main processes of photosynthesis: the {\bf{light-dependent}} and the {\bf{light-independent}} reactions.} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{light dependent}} reaction & use light energy directly to produce ATP. \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} {\bf{Light Independent}} reaction & consist of the Calvin cycle, use ATP formed by light reactions to produces sugar. \tn % Row Count 15 (+ 4) % Row 6 \SetRowColor{LightBackground} {\bf{Photosynthetic pigments}} & chlorophylls and carotenoids. {\bf{Chlorophyll a and chlorophyll b}} are green and absorb all wavelengths of light in the red, blue, and violet ranges. The {\bf{carotenoids}} are yellow, orange, and red. They absorb light in the blue, green, and violet ranges. Different types of chlorophyll give a plant greater flexibility to exploit light as an energy source. \tn % Row Count 32 (+ 17) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Photosynthesis (cont)}} \tn % Row 7 \SetRowColor{LightBackground} & {\bf{Chlorophyll a}} : participates directly in the light reactions of photosynthesis; head surrounded by alternating double and single bonds, attached to a long hydrocarbon tail. (graph) The double bonds within the head. They are the source of the electrons that flow through the electron transport chains during photosynthesis. \tn % Row Count 16 (+ 16) % Row 8 \SetRowColor{white} {\bf{Chloroplast}} & enclosed by double membrane. contains {\bf{grana}} (light- dependent reactions occur), and {\bf{stroma}} (light-independent reactions occur). grana consist of layers of membranes called {\bf{thylakoids}}, the site of photosystems I and II. \tn % Row Count 27 (+ 11) % Row 9 \SetRowColor{LightBackground} & contains photosynthetic pigments that, along with enzymes, carry out photosynthesis. \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Photosynthesis (cont)}} \tn % Row 10 \SetRowColor{LightBackground} {\bf{Photosystems}} & few hundred photosystems in each thylakoid. \tn % Row Count 3 (+ 3) % Row 11 \SetRowColor{white} & consists of a {\bf{reaction center}} containing chlorophyll a and a region containing several hundred antenna pigment molecules that funnel energy into chlorophyll a. \tn % Row Count 11 (+ 8) % Row 12 \SetRowColor{LightBackground} & {\bf{PS II}}(P680) operates first, followed by {\bf{PS I}}(P700). \tn % Row Count 14 (+ 3) % Row 13 \SetRowColor{white} {\bf{Light dependent reactions}} & electron flow \tn % Row Count 16 (+ 2) % Row 14 \SetRowColor{LightBackground} {\bf{Noncyclic Photophosphorylation}} & electrons enter two electron transport chains. The products are ATP and NADPH. \tn % Row Count 20 (+ 4) % Row 15 \SetRowColor{white} & 1. light energy absorbed by {\bf{PHOTOSYSTEM II—P680}}. electrons captured by {\bf{primary electron acceptor}}. \tn % Row Count 26 (+ 6) % Row 16 \SetRowColor{LightBackground} & 2. {\bf{Photolysis}}: splitting of water. It provides electrons, H2O → 2H+ + 2e − + O2 ↑(waste product) \tn % Row Count 32 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Photosynthesis (cont)}} \tn % Row 17 \SetRowColor{LightBackground} & 3. {\bf{ETC}}: This flow of electrons is exergonic and provides energy to produce ATP by chemiosmosis, {\bf{photophosphorylation}}. \tn % Row Count 6 (+ 6) % Row 18 \SetRowColor{white} & 4. {\bf{Chemiomosis}}: {\bf{ATP synthase channels}}, provides energy for calvin cycle later. \tn % Row Count 11 (+ 5) % Row 19 \SetRowColor{LightBackground} & 5. {\bf{NADP}}: reduced, formed NADPH carries hydrogen to the Calvin cycle to make sugar in the light-independent reactions. \tn % Row Count 17 (+ 6) % Row 20 \SetRowColor{white} & 6. Photosystem I - P700**: Energy is absorbed by P700, this ETC produces NADPH, not ATP. \tn % Row Count 22 (+ 5) % Row 21 \SetRowColor{LightBackground} {\bf{Cyclic Photophosphorylation}} & only produce ATP (bc calvin cycle later comsumes a lot) \tn % Row Count 25 (+ 3) % Row 22 \SetRowColor{white} {\bf{Light Independent - Calvin Cycle}} & CO2 enters, then produces the 3-carbon {\bf{sugar PGAL}} \tn % Row Count 28 (+ 3) % Row 23 \SetRowColor{LightBackground} & occurs only in the light. \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Photosynthesis (cont)}} \tn % Row 24 \SetRowColor{LightBackground} {\bf{photorespiration}} & Unlike normal respiration, no ATP is produced. Unlike normal photosynthesis, no sugar is formed. {\bf{peroxisomes}} break down the products of photorespiration. \tn % Row Count 8 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Metabolism}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{sum of all chemical reactions} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{catabolism}}: break down molecules} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{anabolism}}: build up molecules} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Enzyme-controlled reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{enzyme serve as catalytic proteins that speed up reactions by lowering the {\bf{energy of activation}}, EA (the amount of energy needed to begin a reaction).} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The {\bf{transition state}} is the reactive (unstable) condition of the substrate after sufficient energy has been absorbed to initiate the reaction.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Endergonic vs. Exergonic (graph)} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Enzyme Characteristics}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{- enzymes: {\bf{globular proteins, teritary structure}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- substrate specific} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{- {\bf{induced-fit model}} (change confrontaton)} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- {\bf{enzyme substrate complex}}} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{- are not destroyed during a reaction, but reused.} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- are named after their substrate, ends in the suffix "ase." (ex: lactase for lactose, sucrase for sucrose)} \tn % Row Count 9 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{- catalyze reactions in both reactions} \tn % Row Count 10 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- require assistance from {\bf{cofactors}} (inorganic) or {\bf{coenzymes}} (vitamins)} \tn % Row Count 12 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{- will not catalyze a reaction that would not occur otherwise.} \tn % Row Count 14 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- effciency is affected by temperature and PH. favor low temperature and low PH} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cell respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{cells extract energy stored in food and transfer that energy to molecules of ATP.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{anaerobic respiration}}(no oxygen( & glycolyisis + alcoholic fermentation or lactic acid fermentation. \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Aerobic respiration}} (oxygen) & Glycolysis + Krebs cycle + electron transport chain + oxidative phosphorylation \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{reduction}}: gain of electrons (e – ) or hydrogen (H+ ), while {\bf{oxidation}} is the loss of electrons or protons. In any {\bf{redox reaction}}, one substance is reduced while the other is oxidized.} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{As hydrogen (with its electron) is transferred from glucose to oxygen, it is moving from a higher energy level to a lower one, releasing energy in stages. This free energy powers the synthesis of ATP.} \tn % Row Count 18 (+ 4) % Row 5 \SetRowColor{white} {\bf{ATP}} & adenosine (the nucleotide adenine plus ribose) plus three phosphates. \tn % Row Count 22 (+ 4) % Row 6 \SetRowColor{LightBackground} substrate level phosphorylation & direct enzymatic transfer of phosphate to ADP. \tn % Row Count 25 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{When one phosphate group is removed from ATP by hydrolysis, a more stable molecule, ADP results, releasing energy} \tn % Row Count 28 (+ 3) % Row 8 \SetRowColor{LightBackground} {\bf{Glycolysis}} (graph) & 2 ATP + 1 Glucose (6 carbon) → 2 Pyruvate (3 carbon) + 4 ATP, produce 2 ATP; occurs in cytoplasm, releases ATP without using oxygen. The end product, pyruvate, is the raw material for the Krebs cycle, the next step in aerobic respiration. Without glycolysis to yield pyruvate, aerobic respiration could not occur; ATP is produced by substrate level phosphorylation—by direct enzymatic transfer of a phosphate to ADP; If ATP is enough, it uses allosteric inhbition (inhibits PFK by althering the confrontation of the enzyme, thus stopping glycolysis), if ATP is less (as more cell activities uses), less less ATP is available to inhibit PFK and glycolysis continues, ultimately to produce more ATP. \tn % Row Count 62 (+ 34) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cell respiration (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{Mitochondrion}}(graph)* & Double membrane; outer membrane is smooth, but the inner or {\bf{cristae membrane}} is folded. Inner membrane has two: {\bf{outer compartment}} and {\bf{matrix}}. \tn % Row Count 8 (+ 8) % Row 10 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Aerobic respiration}} :glycolysis(anaerobic) + Krebs cycle and oxidative phosphorylation (aerobic).} \tn % Row Count 11 (+ 3) % Row 11 \SetRowColor{LightBackground} {\bf{Krebs Cycle}} & in {\bf{matrix of mitochondria}}, requires pyruvate (product of glycolysis), completes the oxidation of glucose to CO2, turn twice, generates 1 ATP per turn, the remainder of the chemical energy is transferred to NAD+ and FAD, then the reduced coenzymes, NADH and FADH2 , shuttle high-energy electrons into the electron transport chain in the cristae membrane. \tn % Row Count 29 (+ 18) % Row 12 \SetRowColor{white} & coenzyme A (a vitamin) to form {\bf{acetyl-CoA}}, which does enter the Krebs cycle. The conversion of pyruvate to acetyl-CoA produces {\bf{2 NADH}}, 1 NADH for each pyruvate. \tn % Row Count 37 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cell respiration (cont)}} \tn % Row 13 \SetRowColor{LightBackground} & Each turn of the Krebs cycle releases {\bf{3 NADH, 1 ATP, 1 FADH}}, and the waste product {\bf{CO2}}, two turns total \tn % Row Count 6 (+ 6) % Row 14 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{NAD+ and FAD}}} \tn % Row Count 7 (+ 1) % Row 15 \SetRowColor{LightBackground} & {\bf{coenzymes}} that carry protons or electrons from glycolysis and the citric acid cycle to the electron transport chain. \tn % Row Count 13 (+ 6) % Row 16 \SetRowColor{white} & NAD/FAD facilitates the transfer of hydrogen atoms from a substrate to its coenzyme NAD+. \tn % Row Count 18 (+ 5) % Row 17 \SetRowColor{LightBackground} & Without NAD+ to accept protons and electrons from glycolysis and the Krebs cycle, both processes would cease and the cell would die. \tn % Row Count 25 (+ 7) % Row 18 \SetRowColor{white} & NAD+ is the oxidized form. NADre or NADH is the reduced form. \tn % Row Count 28 (+ 3) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{electron transport chain (ETC)}} (graph)} \tn % Row Count 29 (+ 1) % Row 20 \SetRowColor{white} & {\bf{proton pump}} in {\bf{cristae membrane}} of the mitochondrion. \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cell respiration (cont)}} \tn % Row 21 \SetRowColor{LightBackground} & thousands ETC due to the extensive folding of the cristae membrane. \tn % Row Count 4 (+ 4) % Row 22 \SetRowColor{white} & {\bf{final electron acceptor}}, through a series of {\bf{redox reactions}}. \tn % Row Count 8 (+ 4) % Row 23 \SetRowColor{LightBackground} & highly {\bf{electronegative}} oxygen pulls electrons through the electron transport chain. \tn % Row Count 13 (+ 5) % Row 24 \SetRowColor{white} & NADH provides more energy for ATP synthesis than does FADH2 . \tn % Row Count 16 (+ 3) % Row 25 \SetRowColor{LightBackground} & {\bf{cytochromes}} used to trace evolutionary relationships. \tn % Row Count 19 (+ 3) % Row 26 \SetRowColor{white} & {\bf{coenzyme Q}}, {\bf{mobile electron carrier}}, diffuses within and along the membrane. If the cristae membrane were not fluid, Q could not move through it, and the ETC could not operate. \tn % Row Count 28 (+ 9) % Row 27 \SetRowColor{LightBackground} & {\bf{Exergonic reactions are coupled with endergonic ones.}} The exergonic flow of electrons toward the highly electronegative oxygen provides the energy for the endergonic pumping of protons. \tn % Row Count 37 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cell respiration (cont)}} \tn % Row 28 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{oxidative phosphorylation/chemiomosis}} (graph)} \tn % Row Count 1 (+ 1) % Row 29 \SetRowColor{white} & {\bf{proton (H+ ) gradient}} from NADH and FADH2 to phosphorylate ADP and produce ATP (ADP + P → ATP). \tn % Row Count 6 (+ 5) % Row 30 \SetRowColor{LightBackground} & Protons are pumped from the {\bf{matrix}} to the {\bf{outer compartment}}, against a gradient, by the electron transport chain. \tn % Row Count 12 (+ 6) % Row 31 \SetRowColor{white} & As protons flow down through the {\bf{ATP synthase channel}}s, they generate energy to phosphorylate ADP into ATP. \tn % Row Count 18 (+ 6) % Row 32 \SetRowColor{LightBackground} & {\bf{Oxygen}} is the {\bf{final hydrogen acceptor}}, combining and forming {\bf{water}}, which is the waste product of cell respiration \tn % Row Count 24 (+ 6) % Row 33 \SetRowColor{white} Summary of ATP production & Substrate level phosphorylation + Oxidative phosphorylation \tn % Row Count 27 (+ 3) % Row 34 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Glucose → NADre and FADre → electron transport chain → chemiosmosis → ATP}}} \tn % Row Count 29 (+ 2) % Row 35 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The {\bf{catabolism (breakdown) of glucose}} under aerobic conditions occurs in three sequential pathways: glycolysis, pyruvate oxidation, and the citric acid cycle.} \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Cell respiration (cont)}} \tn % Row 36 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Anaerobic respiration - fermentation}} (glycolysis + alcohol/lactic acid fermentation)} \tn % Row Count 2 (+ 2) % Row 37 \SetRowColor{white} 2 types of anaerobes & {\bf{Facultative}}: tolerate the presence of oxygen, {\bf{Obligate}}: cannot live in an environment containing oxygen. \tn % Row Count 8 (+ 6) % Row 38 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{When there is an adequate supply of NAD+ to accept electrons during glycolysis, fermentation can generate ATP. Without some mechanism to convert NADH back to NAD+ , glycolysis would shut down.} \tn % Row Count 12 (+ 4) % Row 39 \SetRowColor{white} {\bf{Alcohol Fermentation}} & convert pyruvate from glycolysis into {\bf{ethyl alcohol}} and {\bf{carbon dioxide}}, oxidize NADH back to NAD+. (ex: bread baking to rise) \tn % Row Count 19 (+ 7) % Row 40 \SetRowColor{LightBackground} {\bf{Lactic Acid Fermentation}} & pyruvate from glycolysis is reduced to form {\bf{lactic acid or lactate}}, NADH gets oxidized back to NAD+. (ex: yogurt and cheese) \tn % Row Count 26 (+ 7) % Row 41 \SetRowColor{white} & Ex: {\bf{Human skeletal muscles}}, when the blood cannot supply adequate oxygen to muscles during strenuous exercise. Lactic acid in the muscle causes fatigue and burning. The, continues to build up until the blood can supply the muscles with adequate oxygen to repay the oxygen debts. \tn % Row Count 40 (+ 14) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}