Cheatography

Functions

Used to break problem down to small, bite
sized pieces

Have an optional type of return value, a
name and optional arguments

Functions return at most, ONE value

Functions must be prototyped or declared
before usage

Call by Address

#include<stdio.h>

void interc han ge(intuml,int

num?2)
{

int temp;

temp = *numl;

numl = num2;

*num2 = temp;
}
int main() {

int numl=5 0,n um2=70;

int erc han ge(&n -
uml ,& num2) ;

pri ntf ("\n Number 1
$d", numl) ;

pri ntf ("\n Number 2
$d", num2);

ret urn(0);
}
OUTPUT
Number 1: 70
Number 2 : 50

Call Value

numi

Address of Variable “numt”
is passed to Function

v

Operations done on by Taking
Value from Address i.e Original Copy

]
Thus Original Value also gets updated

By Omghansda

cheatography.com/Omghansda/

ECE160 Test 2 Cheat Sheet
by omghansda via cheatography.com/19854/cs/2798/

Extra Types

int -2,147,483,648 to +2,147,48-
3,647

unsigned 0 to 4,294,967,295

int

int64 -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807

Switch

switch (<condition>)

{

case <value> :
<statements>
[break;]

case <value>:
<statements>
[break;]

[default:
<statements™>
[break;]]

CBR vs CBV
‘ Point ‘ Call by Value ‘ Call by Reference
Copy Duplicate Copy of Original Actual Copy of Original Parameter is
Parameter is Pas: Passed
Modification | No effect on Original Parameter | Original Parameter gets affected if
after ifyi in value of changed inside

function function

Array Sample

Location 0 i 2 3 4

a[0] = 4;
a[1] = 5;
a[2] = 33;
a[3]=13;
a4 =1;

Call-By-Value Steps

Copy of original parameter is created &
passed to the called function
Updates inside method will NOT affect the

original value of the variable in the calling
function

Published 5th November, 2014.
Last updated 11th May, 2016.
Page 1 of 1.

Call-By-Value Steps (cont)

scope is limited, therefore it cannot alter
values inside main function

Call by Value

#include<stdio.h>

void interc han ge(int number -
1,int number2)

{

int temp;
temp = numberl;
numberl = number2;
number2 = temp;

}

int main () {

int numl=5 0,n um2=70;

int erc han ge(num -
1,n um?2);

pri ntf ("\n Number 1
sd",

numl) ;

pri ntf ("\n Number 2

%d", num2);
ret urn(0) ;

}

OUTPUT
Number 1 : 50
Number 2 : 70

CallRef

numit

Variable numt is passed to Function
Using Pass by Value Scheme

|

Value of Variable “num1” is copied
into Formal Parameter — “numbert”

Operations Done on Xerox copy of “num1”
i.e “number?” not on actual copy

Call by ref = call by address

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/0mghansda/
http://www.cheatography.com/0mghansda/cheat-sheets/ece160-test-2
https://cheatography.com/uploads/0mghansda_1415150594_callvalue.png
https://cheatography.com/uploads/0mghansda_1415149937_switch.jpg
https://cheatography.com/uploads/0mghansda_1415150478_38f0c9c093727ea93b700efdce001097.png
https://cheatography.com/uploads/0mghansda_1415154173_array.png
https://cheatography.com/uploads/0mghansda_1415150368_ref.png
http://www.cheatography.com/0mghansda/
https://readable.com

	ECE160 Test 2 Cheat Sheet - Page 1
	Functions
	Extra Types
	Call by Value
	Switch
	Call by Address
	CBR vs CBV
	Array Sample
	CallRef
	Call Value
	Call-B­y-Value Steps

