A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

A quantity without direction. Length/Distance, Speed, Mass, Temperature, Time, Energy A quantity with both direction and magnitude Displacement, Velocity, Force (inc. Weight), Accele- ration, Momentum When all forces acting on an object are balanced and cancel each other out. → There is no resultant force A diagram of all the forces acting on a body, but not
Displacement, Velocity, Force (inc. Weight), Accele- ration, Momentum When all forces acting on an object are balanced and cancel each other out. → There is no resultant force
cancel each other out. > There is no resultant force
A diagram of all the forces acting on a body, but not
the forces it exerts on other things. The arrows indicate magnitude and direction.
For a body to be in equilibrium, the sum of the clockwise moments equals the sum of the anticl- ockwise moments.
The product of the size of the force and the perpen- dicular distance between the turning point and the line of action of the force.
A pair of forces with equal size which act parallel to each other but in opposite direction. E.g. turning a car's steering wheel.
The single point from which the body's weight acts through. The object will always balance around this point. To calculate for uniform objects: $\Sigma mx = M\bar{x}$
v = u + at s = 1/2 (u+v)t $v^2 = u^2 + 2as$ $s = ut + 1/2 at^2$ $s = vt - 1/2 at^2$

Displacem-	Displacement (y) against Time (x).
ent-Time Gradient = Velocity	
Graph	Acceleration = Δgradient
Velocity-	Velocity (y) against Time (x)
Time Graph	Gradient = Acceleration
	Δ Gradient = Δ Acceleration
	Area = Displacement
Variable	↓Differentiate ↓
Acceleration	Х
	V
	a
	∆a ∱Integrate ∱
Accelerat-	Acceleration (y) against Time (x).
ion-Time	Gradient = Δ Acceleration
Graph	0 Gradient = No acceleration 🗲 constant velocity.
	Constant Gradient = constant acceleration
	Area = Velocity
	NB: Remember to treat area below the time axis as
	negative!
Newtons 1st Law	The velocity of an object will not change unless a resultant force acts on it.
Newtons	F = ma
2nd Law	The acceleration of an object is \propto to the resultant
	force acting upon it. (for objects with a constant
	mass)
	Points to remember:
	Resultant Force is vector sum of all the forces
	• Unit = N
	• Ensure mass is in kg
	Acceleration is in the same direction as resultant force.
Newtons	If object A exerts a force on object B, then object B
3rd Law	exerts an equal but opposite force on object A

C

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 1 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Mechanics (cont)	Mechanics	s (cont)
Freefall	When there is only gravity acting upon an object. i.e. motion with an acceleration of g (9.81ms ⁻²)	Elastic Collision	Kinetic energy is conserved i.e. no energy is dissipated as heat or other energy forms.
	The same SUVAT equations apply, however, u = 0 and a = g {{ng}} NB: 'direction' of motion, dictates the sign of g	Impulse	An extension of N2L. Impulse is the product of force and time and is equal to the momentum of that body. $F\Delta t = \Delta(mv)$
Projectile	An object given an initial velocity, then left to move		Also equal to the area under a force-time graph.
Motion	freely under g. There is separate horizontal and vertical motion with time being the only common attribute. Both motion follows SUVAT equations but horizontal motion has no acceleration.	Work Done	The energy transferred from one form to another. W = Fd Work Done = The force causing motion x distance moved
Friction	 Force that opposes motion. When in a fluid (liquid or gas) it is drag, drag depends on: Viscosity of the fluid Speed of object Shape of the object For all frictional forces Force is in the opposite direction to motion Can never increase speed or induce motion They convert kinetic energy → heat. 	Power	The rate of work done over time $P = \Delta W / \Delta t$
		Force Displa-	P = Fv → derived from combining P and W = Fs Area = Work Done
		cement Graph	
		Conser- vation of	Energy cannot be created nor destroyed, only converted from one form to another, but the total energy of a
Lift	Upwards force on a object in a fluid	Energy	closed system will not change.
Terminal	When frictional forces equal the driving force. For a	Efficiency	useful output/input in terms of energy or power.
Speed	falling object, when drag equals the force due to their mass.	Materials	
Momentum	The product of the mass and velocity of an object. Momentum in any collision is conserved (when no external forces are involved)	Density	ρ = m/V A property all materials have and is independent of both shape and size.
Inelastic Collision	Not all of the kinetic energy is conserved. Momentum however is conserved.	Limit of Propor- tionality	The point where Hooke's law no longer applies. On a force-extension graph, the limit of proportionality is where the line is no longer straight

cheatography.com/0lliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 2 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Materials (cont)		
Hooke's Law	 F = k∆L The force is proportional to the extension of a stretched wire. k is the stiffness constant → a measure of how hard it is to stretch 	
Elastic Limit	The point on a force-extension graph where the line begins to curve. Beyond this point, permanent deform- ation occurs where the wire will no longer return to its original shape.	
Force Ext- ension Graph	Straight section → Gradient = k Loading and unloading plot a loop, if a stretch is elastic, the curve starts and finishes in the same position (the origin). If plastic deformation occurs, the unloading line has the same gradient (k) but crosses the x axis at a different point Area = Elastic Strain Energy The area between the loading and unloading line (after plastic deformation) is equal to the work done in deforming the material	
Tensile Stress	The ratio of forced applied and cross-sectional area. <i>stress</i> = F/A	
Tensile Strain	The ratio of extension to original length, it has no units and is just a ratio. strain = $\Delta L/L$	
Youngs Modulus	The ratio of tensile stress and tensile strain E = $FL/A\Delta L$ The YM of a material is the constant value up to the limit of proportionality,	
Stress- Strain Graph	Stress (y) against Strain (x). Gradient = Young's Modulus Area = strain energy per unit volume	

Materials (con

Yield Point	The point on a stress-strain graph where the material stretches without any extra load.
Brittl- eness	When a material breaks after a certain about of force is applied. The line simply stops on a stress-strain graph. The same thing applies on a force-extension graph, the line just stops.
Therma	I Physics
Kelvin	A temperature scale that is in terms of an atoms movements. °C ➔ K + 273
Absolut Zero	The lowest theoretical temperature of anything → 0 K = -273°C
Internal Energy	
Closed System	A system where no matter or energy is transferred in or out of the system
Heat Transfe	Heat is always transferred from a hot area/substance to a cold area/substance.
Specific Heat Capacit	material by 1°C/1 K

By **OllieC** (OllieC) cheatography.com/Olliec/ Published 3rd June, 2017. Last updated 3rd June, 2017. Page 3 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Thermal Physics (cont)		Thermal Physics (cont)	
Specific Latent Heat	The specific latent heat of fusion (→ Solid) / vapori- sation (→ gas) is the quantity of thermal energy needed/will be lost to change the state of 1kg of the substance. Q = ml where m is the mass and I the latent heat. When a substance changes state, there is a period where the temperature of the material is constant, as the internal energy rises, this is due to the latent heat.	Ideal Gas Equations	 pV = nRT n = number of moles R = molar gas constant pV = NkT N = number of molecules k = Boltzmann constant A way of remembering which n is which. Moles will be small, therefore small n. Number of molecules will be
Boyle's Law	At a constant temperature, pV is constant. i.e. p1V1 = p2V2 On a p-V plot, the higher the line, the higher the temper- ature.	Kinetic Theory	large so, big N. The pressure exerted by an ideal gas can be derived by considering the gas as individual particles. $pV = 1/3 \times Nm(Crms)^2$
Charles' Law	At a constant pressure: V is directly proportional to its absolute temperature T V1/T1 = V2/T2		Crms is the root mean square speed. Assumptions
Pressure Law Molecular	At a constant volume: p is directly proportional to its absolute temperature. $p_1/T_1 = p_2/T_2$ the sum of the masses of all the atoms that make up the		 All molecules in the gas are identical Gas contains a large number of molecules The volume of the molecules is negligible when compared to the volume of the container/gas as a use alse
Mass Relative Molecular Mass	molecule. The sum of the relative atomic masses of all the atoms.	Brownian Motion	whole. Random motion of particles suspended in a fluid → helped provide evidence that the movement of the particles was due to the collisions of the fast randomly moving particles, which supported the model of kinetic
Avogadro Constant	The number of atoms in exactly 12g of carbon isotope 12 6C. NA = 6.02 $x10^{23}$ mol^-1	Average Kinetic	theory. 1/2 x m(Crms) ² = 3/2 x nRT/N ↓
Molar Mass	The mass of a material containing NA molecules	Energy Particles a	$1/2 \times m(C_{TMS})^2 = 3/2 \times RT/NA$
		Proton & Neutrons	The 2 Baryons that make up the nucleus of an atom. Comprised of 3 quarks. Protons have a relative charge: +1, neutrons: 0. Both have a relative mass of 1 (1.67 $\times 10^{-27}$ kg).

C

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 4 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Particles and Radiation (cont)		Particles an	d Radiation (cont)
Electron	A fundamental lepton, with a charge of -1. Cannot be broken down into other subatomic particles. Relative mass of 1/2000 (9.11x10 ⁻³¹ kg)	Photon	A discrete packet of electromagnetic radiation with 0 mass. E = hf = hc/ λ
Nuclide Notation ^A ZX	The general notation of elements.	Antipa- rticle Pair	The corresponding antiparticle to any particle has the same mass and rest energy but opposite charge.
Proton Number (Z)	•		When 2 of the same particles collide at high speed and produce a particle-antiparticle pair. The energy of the collisions is converted into the pair. Also occurs when a photon has enough energy to produce an electron
Nucleon Number	AKA Mass Number - number of total nucleons (protons + neutrons)		positron pair. Emin = 2E0 (in MeV)
(A) Specific Charge	The ratio of a particles charge to its mass. Specific meaning per kg. S.C. = Charge (Q) / Mass (kg)	Annihi- lation	When a particle and antiparticle collide producing 2 photons in opposite directions. Emin = E0 This collision is used in PET scanners to detect
Isotope	Atoms with the same number of protons but a different number of neutrons. Affects the stability of a atom	Hadron	cancers. Particles that can <i>feel</i> the strong force. Either a baryon
Strong Nuclear Force	A strong force that holds atoms together at small distances, strong enough to overcome the electrostatic repulsion of the protons. Distances Repulsive: <0.5 fm (0.5 x10 ⁻¹⁵ m) Attractive: 0.5 to 3 fm	Baryon	or a meson depending on its quark structure A hadron consisting of 3 quarks. All are unstable except a free proton - all eventually decay into a proton. Proton: uud Neutron: ddu
Alpha Decay	Rapidly falls to) after 3 fm.Occurs in big atoms (82+ protons). Atoms emits a helium nucleus (2 protons 2 neutrons). Particles is too big to be	Baryon Number	A quantum number which is always conserved. Baryons have a B.N. of +1. Antibaryons have a B.N. of -1 and all other particles have a B.N of 0.
(α) Beta- Minus	kept stable by the SNF. Emission of a electron and anti-electron-neutrino. Happens in neutron rich particles. In nucleus structure	Mesons	A hadron consisting of 2 quarks - a quark-antiquark pair. There are 9 possible combinations, making either Kaons or Pions.
Decay (β⁻)	terms, a neutron turns into a proton by changing an d quark to a u quark, emitting an electron and anti-electron- neutrino.	Lepton	A fundamental particle that doesnt feel the strong force. Interacts via the weak interaction.
Beta- Plus Decay	Emission of a positron and an electron neutrino. One of the atoms protons, changes a u quark to a d quark, changing to a neutron emitting a positron and an electr-	Lepton Number	Another quantum number that is always conserved. Must be separate for lepton-electron number and electron-muon number.
(β ⁺)	on-neutrino.		

By **OllieC** (OllieC) cheatography.com/Olliec/ Published 3rd June, 2017. Last updated 3rd June, 2017. Page 5 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Particles and Radiation (cont)		
Strange Particles	 Particles that have a property of strangeness - contain a strange/anti-strange quark. Created via the strong interaction Decay via the weak interaction Rules of conversation mean that strange particles are only produced in pairs. 	
Strang- eness	Another quantum number - however it can change by ± 1 or 0 in an interaction.	
Quark	A fundamental particle that makes up hadrons. There are 6 types: up/down , top/bottom, strange /charm.	
Quark Confin- ement	There is no where to get a quark on its own, when enough energy is provided, pair-production occurs, with one quark remaining in the particle.	
Weak Intera- ction	β^+ and β^- are both examples of weak interactions, which is interaction via the weak force, the force acting between leptons.	
Feymann Diagram	A diagram of particle interactions, with: Wavy Lines : Exchange Particle Straight Lines : Particles in/out of the interaction (with arrows indicating direction)	
Magnetic F	Fields	
Magnetic Field	A region where a force acts, force is exerted on magnet- ic/magnetically susceptible materials (e.g. iron).	
Magnetic Field Lines	Lines that show a magnetic field. They run from north to the south pole of a magnet. The more dense the lines are, the stronger the field	

Magnetic F	Fields (cont)
Magnetic Flux Density	The force on one metre of wire carrying a current of 1 A at right angles to the magnetic field. AKA The strength of the magnetic field B = F/II Magnetic flux density is the force by the current meter
Magnetic Field around a wire	 When current flows, a magnetic field is induced. Right hand rule: Curl Fingers around "wire". Stick up thumb Thumb:Direction of current Fingers: Direction of magnetic field
Solenoid	A cylindrical coil of wire acting as a magnet when carrying electric current. Forms a field like a bar magnet.
Force on a Current- Carrying Wire	A current-carrying wire, running through a magnetic field generates a resultant field of the one induced by the current and the pre-existing one. The direction of the force is perpendicular to the current direction and the mag. field.
LeFt- hand Rule	For finding the direction of the Force. • Thumb upwards • First finger forwards • Second finger to the right (perpendicular to f.f.) Thumb:Force/Motion First Finger:Field Second Finger:Current
Charged Particles in a mag. field	F = BQv

С

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 6 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Magnetic Fields (cont)		
Circular Path	For a charge travelling perpendicular to a field is always perpendicular to the direction of motion → The condition for circular motion.	
	$F = mv^2/r$ can be combined with $F = BQv$.	
	Rearranged for r, this shows that:	
	 r increases if mass or velocity increases r decreases if the mag. field strength is increased or the charge increases f = v/2πr 	
	•Combined with r = mv/BQ \Rightarrow f = BQ/2 π m	
Particle Accele- rator	A cyclotron consists of 2 hollow semiconductors, with a uniform magnetic field applied perpendicular to the plane of the D magnets. An A.C. is applied. Charged particles are fired into the D's. They accelerate across the gap between magnets, taking the same amount of time for the increasing radius.	
Magnetic Flux	The number of flux lines through a certain area hence{{n}} $\Phi = BA$	
	In other words its the amount of flux passing through an area	
Electr- oma- gnetic Induction	Relative motion between a conductor and a mag. field, causes an emf to generate at the ends of the conductor as the electrons accumulate at one end.	
muucuon		

Magnetic Fields (cont) Flux Linkage The amount of field lines being cut $N\Phi = BANCos(\theta)$ where θ is the angle between the normal to the coil and the field. (if it is perpendicular, $\theta = 0^{\circ}$ Faraday's Induced e.m.f. is proportional to the rate of change of Law flux linkage... $\varepsilon = N\Delta \Phi / \Delta t$ Lenz's Law The induced e.m.f. is always in such a direction that it opposes the change that caused it. $N\Phi = BANCos(\omega t)$ e.m.f in a rotating coil $\varepsilon = BAN\omega Sin(\omega t)$ Flux Linkage and Induced e.m.f. are 90° out of phase. Generator Ek is converted into electrical energy, the kinetic energy turns a coil in a magnetic field so that they induce a electric current. **R**ight-hand For Generators. · Thumb upwards Rule · First finger forwards · Second finger to the left (perpendicular to f.f.) Thumb:Force/Motion First Finger: Field Second Finger: Current Alternating Current that's direction changes over time. The Current voltage across the resistance goes up and down. Root Mean Vrms = V0/sqrt(2) Squared Irms = I0/sqrt(2) (rms) Power Prms = Irms x Vrms

C

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 7 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Magnetic Fi	ields (cont)	Engineering	3
Transf- ormer	A device that uses electromagnetic induction to change the size of a voltage for an alternating current. An alternating current flowing in the primary coil causes the core to magnetise/demagnetise continuously in opposite directions. This produces a rapidly changing magnetic flux in the core (made of magnetically soft material . The changing flux passes through the secondary coil induces a alternating e.m.f. if the same	Moment of Inertia Rotational	A measure of how difficult it is to rotate an object or change its rotational speed $I = \Sigma mr^2$ This equation means that the moment of inertia is dependent in the masses, and their distribution, so a solid disk may have a lower moment of inertia than a hoop. The rotational kinetic energy of an object is dependant
	frequency but different voltage (if the no. of turns is different)	Kinetic Energy	on its moment of inertia. Eκ = 1/2 x Ιω ²
Transf- ormer Equations	P.Coil: $V_{\rm P} = N_{\rm P} \times \Delta \Phi / \Delta t$ S.Coil: $V_{\rm S} = N_{\rm S} \times \Delta \Phi / \Delta t$ Combines to: Ns/Np = Vs/Vp	Rotational SUVAT	The SUVAT equations can be applied directly to rotational motion, but with rotational's counterparts: $s \Rightarrow \theta$ (rads) $u \Rightarrow \omega 0$ $v \Rightarrow \omega$
	 Eddy Currents (looping currents induced by changing flux) → create opposing magnetic fields reducing its strength → reduced by laminating the core so that current cannot flow between the cores layers Heat Generation → due to the resistance in the coils → reduced by using a wire with a low resistance Magnetising/Demagnetising the core → energy is wasted as the core is heated → reduced by using a magnetically soft core, which has a small hysteresis loop, this the energy required to create/collapse the field is minimised 		a → α t → t
		Torque	When a force causes an object to turn, the turning effect is torque. $T = Fr$ $T = I\alpha$
		Work & Power	The work done is the product of the force and the angle turned by: $\mathbf{W} = \mathbf{T} \mathbf{\theta}$
			Power is the amount of work done in a given time: $\mathbf{P} = \mathbf{T}\boldsymbol{\omega}$ as $\Delta \theta / \Delta t = \omega$
	efficiency = IsVs/IpVp → powerout/powerin		Frictionalk Torque occurs in real world systems therefore: Tnet = Tapplied - Tfrictional

By **OllieC** (OllieC) cheatography.com/Olliec/ Published 3rd June, 2017. Last updated 3rd June, 2017. Page 8 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Engineering (cont)

Flywheels A flywheel is a heavy wheel that has a high moment of inertia, meaning once spinning it is hard to stop. They are charged as they are spun, turning T into rotational kinetic energy. It is used as a energy storage device → if energy is needed, the wheel decelerates and provides some of its rotational energy to another part of the machine.

Flywheels maximused for energy storage are dubbed flywheel batteries.

Factors that effect storage:

- Mass → If the mass is increased, the moment of inertia and hence the r. Ek
- Angular Speed ⇒ if the angular speed is increasd, the energy stored increases with angular speed², so increasing the a.speed, greatly increases energy storage.
- Spoked Wheel > this again increases the moment of inertia as the mass is distributed further away from the center.
- Material → Carbon fibre is generally used as it is strong and allows for higher angular speeds
- Friction Reduction
 Iubrication is used to reduce friction as well as superconducting magnets to stop contact and therefore friction. Vacuums are also used so air resisitance is not a factor.

Uses

- Smoothing Torque > Flywheels are used to keep systems relying on torque running smoothly
 Breaking > especially in F1 cars, flywheels are used
- to harness some of the force when breaking to allow for faster acceleration afterwards
- Wind Turbines
 to provide stable power for days without wind and/or peak times

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 9 of 21.

Engineering (c	cont)
Angular Momentum	Angular Momentum = Ιω Iinitial x winitial = Ifinal x wfinal Angular Momentum IS** conserved
	Angular Momentum 15 conserved
Angular Impulse	Impulse = $\Delta(I\omega)$ = T Δt
1st Law of Thermodyn-	$Q = \Delta U + W$
amics	If energy is transferred to the system: Q = +ve If work is done on the gas: W = -ve If the internal energy increases :U = +ve
	For closed systems, the first law can be applied, also known as non-flow processes as no gas flows in or out. To apply the law, it is assumed to be an Ideal Gas.
Isothermal (Constant temper- ature) Change	Δ U = 0 Therefore Q = W There is no change in internal energy no change in temperature therefore: pV = Constant.
	pV plot is a curve, with higher lines indicating a higher temperature. The work done is the area under the line.
	Expansion is $\checkmark \Rightarrow$ and is positive. Compression is $\uparrow \Leftarrow$ and is negative.
Adiabatic (No heat transfer) Change	$\mathbf{Q} = 0$ Therefore $\Delta U = -W$ $pV^{Y} = constant$
	Steeper gradient than a isotherm's plot. There is a greater amount of work done for an adiabatic change

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

http://crosswordcheats.com

than a isotherm

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Engineering (cont)		Engineering (cont)		
Isobaric (Constant Pressure) Changes	W = p∆V Therefore V/T is constant No work done.	4- Stroke Petrol Engine	 Induction → The piston starts at the top of the cylinder, and moves down increasing the volume of the gas above it. A air-fuel mixture is drawn in through an open inlet valve. Pressure remains constant just above atmospheric. Compression → The inlet valve is closed, the piston 	
Isometric (Constant Volume) Changes Cyclic Process	 W = 0 Therefore Q = ΔU and p/T is constant Work done = area under straight line A System that undergos a number of combinations of processes. They start at a certain pressure and volume and return to it at the end of a cycle. 		 moves up the cylinder. Work is done on the gas, and the pressure increases. Just before the end of the stoke, a spark ignites the air-fuel mixture. Temperature and pressure increase. Expansion → The explosion expands and pushes the piston back down. Work is done as the gas expands, there is also a net output. Just before the bottom, the exhaust valve opens and the pressure reduces. Exhaust → The piston moves up the cylinder and the burnt gas leaves through the exhaust valve, the pressure remains constant just above atmospheric. 	
		4- Stroke Diesel Engine	 Induction Stroke → Only air is drawn. Compression → The air is compressed enough to have a temperature to ignite diesel fuel → just before the end of the stroke, diesel fuel is sprayed in and ignites. Expansion & Exhaust → The same as petrol 	

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 10 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Engineering	g (cont)			
Indicated Power	Pindicated = Area of p-V loop x cycles per second x no. of cylinders The net work done by the cylinder in one second.			
Output Power	The useful power at the crankshaft $P = T\omega$			
Friction Power	The power lost due to friction between moving parts Pfriction = Pind - Pbrake			
Engine Efficiency	Pinp = Calorific Value x Fuel Flow Rate Mechanical Efficiency = Pbrake/Pind Affected by energy lost due to moving parts Thermal Efficiency = Pind/Pinp Heat energy transferred into work Overall Efficiency = Pbrak e/Pinp			
2nd Law of Thermo- dynamics	Heat engines must operate between a heat source and a heat sink Engine Efficiency = $W/QH = (QH - QC)/QH$ Max Theoretical Efficiency = $(TH - TC)/TH$			
Heat Engine	A Source of heat (TH) ↓ QH ↓ Heat Engine → W ↓ QC ↓ Heat Sink (T⊂)			
Reverse Heat Engine	Hot (TH) ↑ QH ↑ Heat Engine ← W ↑ QC ↑ Cold (TC)			

Engineering (cont)

Refrid- gerator	A reverse heat engine where the cold space is the actual fridge. Whilst the hot space is the surroundings, the fridges aim is to extract as much heat from the cold space to the surroundings.				
Coeffi- cient of Prefor- mance	$\label{eq:copref} \begin{split} & \text{COP}_{\text{ref}} = Q_{\text{c}}/W = Q_{\text{c}}/(Q_{\text{h}}-Q_{\text{c}}) = T_{\text{c}}/(T_{\text{h}}-T_{\text{c}}) \\ & \text{COP}_{\text{hp}} = Q_{\text{h}}/W = Q_{\text{h}}/(Q_{\text{h}}-Q_{\text{c}}) = T_{\text{h}}/(T_{\text{h}}-T_{\text{c}}) \end{split}$				
Electricity	y				
Current (I/A)	The rate of flow of charge. Conventionally running from + to Measured my an Ammeter (in series) $I = \Delta Q/\Delta t$				
Potential Differenc (V/V)	1				
Resistan (R/Ω)	 A measure of how difficult it is to move current around the circuit. R = V/I 				
Ohmic Conducte	Under constant physical conditions, I is proportional to or V. On a graph of I (y) against V (x), the gradient is equal to 1/R.				
Filament Lamp	A filament lamp has an IV characteristic of a cubic (s shape) going through the origin. The heat in the filament causes the resistance to increase - the particles in the filament vibrate more, meaning its harder for the current-carrying electrons to move through it, therefore resistance increases as the current increases.				

By OllieC (OllieC)

cheatography.com/0lliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 11 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Electricity (cont)

Electricity	y (cont)
Diode	A diode only allows current to flow in one direction. The IV characteristic is virtually no current until the threshold voltage, where the voltage increases exponentially. The threshold voltage is approx. 0.6V
Resist- ivity	How difficult it is for current to flow through a material. Depends on: • Length of the wire • Cross-sectional area • Resistance. $\rho = RA/L$ Unit: Ωm The lower the resistivity, the better it is at conducting electricity. For Reference: Copper: $1.68 \times 10^{-8} \Omega m$
Semico nductor	A group of materials that arent as good as conducting as metals, however, if more energy is supplied, the resistance lowers → more charge carriers are released.
Superc ond- uctor	A metal that can be cooled, and the resistivity is reduced. There is no resistivity below the critical. The main uses are for strong electromagnets, power cables with no energy loss and fast electronic circuits with minimal energy loss.
Power (P/W)	The rate of transfer of energy. $1W = 1JS^{-1}$ $P = E/t = IV = V^2/R = I^2R$
Energy	$E = ItV = V^{2}t/R = I^{2}Rt$
(E/J)	kWh 🗲 J

kWh x 3.6x10⁶

By **OllieC** (OllieC)

cheatography.com/Olliec/

C

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 12 of 21.

Electr- omotive Force (e.m.f.)	The amount of electrical energy the battery provides and transfers to each coulomb of charge. $\epsilon = E/Q$
Internal Resistance	The resistance inside cells. $\epsilon = I(R + r)$
Kirchhoff's First Law	The total current entering a junction is equal to the total current leaving it, i.e. current is split when it reaches a junction
Kirchhoff's Second Law	The total emf of a series circuit, equals the sum of the pd across each component, i.e. pd is split between components in series but not parallel. $\epsilon = \Sigma IR$
Resistance across Circuits	Series: RT = R1 + R 2 + R3 + Parallel: 1/RT = 1/R1 + 1/R 2 + 1/R3 +
Potential Divider	A circuit with a voltage source and resistors in series. The voltage of one of the resisitors can vary and therefore be used to detect certain changes when thermistors and LDRs are used.
Gravitational	Fields
	region in which a body experiences a non-contact prce.

Fieldforce.NewtonsThe force a body experiences due to gravity is dependantLaw ofon its weight, the weight of the object exerting the forceGravit-and the distance between them → An inverse squareationlaw.

$F = GmM/r^2$

NB The result of this is the magnitude of the force, the direction is **always** towards the centre of the mass causing the gravitational force.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Gravitationa	al Fields (cont)
Gravit- ational Field Strength	The force per unit mass, depending on the location of the body in a field. g = F/m Also a vector quantity, directed towards the centre of the mass causing the force. $g = -\Delta V/\Delta r$
Earth's g	≈ 9.81 Nkg ⁻¹
Radial Field	Point masses have a radial gravitational field (such as planets): $g = GM/r^2$
Gravit- ational Potential	The gravitational potential energy that a unit mass would have. It is negative on the surface of a mass and increases with the distance from the mass. It can also be considered as the energy required to fully escape the body's gravitational pull V = -GM/r
Gravit- ational Potential Difference	The energy required to move a unit mass. When an object is moved, work is done against gravity $\Rightarrow \Delta W = m\Delta V$
Equipo- tentials	Lines/Planes that join points of equal gravitational potential \Rightarrow similar to contour lines on maps. Along these lines both ΔV and ΔW are zero, the objects energy isn't changing.
Satellite	Are smaller objects orbiting a larger object, they are kept in orbit by the force due to the larger body's gravit- ational field.
	In terms of planets → Orbits are ≈ circular, therefore circular motion equations apply.

Gravitational Fields (cont) $T^2 \propto r^3$ Orbital PROOF Period • Combine $F=mv^2/r$ and $F=GmM/r^2$ > Solve for v Propor-• T = $2\pi r/v \leftarrow Sub in v$ tionality The minimum speed an powered object needs to leave Escape the gravitational field of a planet Velocity When an orbiting object has an orbital period equal to the Synchrrotational period of the object its orbiting onous Orbit An satellite in orbit of a body that remains in the same Geostationary place > it has the same time period. It would have to be over the equator to be a true geostationary orbit Orbit Low Satellites that orbit between 180 and 2000 km above Earth. They are designed for communication and as they Orbiting Satellite are low-orbit, they're cheaper to launch and require less powerful transmitters. **EM Radiation and Quantum** Photoe-The emission of electrons from the surface of a metal in response to an incidence light, where the frequency lectric

Effect	of the incidence light is above that of the metals
	threshold frequency.
Threshold	The lowest frequency of light that can cause electrons
Frequency	to be emitted from the surface of a metal.
Work	The minimum quantity of energy which is required to
Function	remove an electron to infinity from the surface of a
	given solid, usually a metal.
	Φ = hf∩

C

By **OllieC** (OllieC) Put cheatography.com/Olliec/ Las

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 13 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

EM Radiation and Quantum (cont)			
Maximum Kinetic Energy	The energy a photon is carrying minus any other energy loses. These energy loses explain the range of kinetic energies of the photons. The max is equal to hf, with no energy loss. hf = Φ + 1/2(m)(vmax) ²		
Stopping Potential	The potential difference required to stop the fastest moving electrons travelling at Ek (max) eVs = Ek (max)		
Electron Volt	The kinetic energy carried by an electron after it has been accelerated from rest to a pd of 1 V. $1eV = 1.6 \times 10^{-19} J$		
Ground State	The lowest energy level of an atom/electron inside an atom.		
Excitation	The movement of an electron to a higher level in an atom, requiring energy. $\Delta E = E_1 - E_2 = hf$		
De-Exc- itation	An electron moving towards ground state releasing energy equal to the difference between the states in the form of a photon.		
Fluore- scent Tubes	The tubes contain mercury vapour, when a high voltage is passed across, producing free electrons, which collide with the mercury electrons exciting them. When they return to the ground state, they release a photon in the UV range. These then collide with the tubes phosphorus coating exciting it's electrons, and then when they return to the ground state they release photons in the visible light range		
Line-E- mission Spectra	A series of bright lines against a black background, with each line corresponding to a wavelength of light.		

EM Radiation and Quantum (cont) When light with a continuous spectrum of energy (white Line-Absolight) pass through a cool gas. Most of the electrons will stay in their ground states but some will be absorbed and rption excite them to higher states, these photons are then Spectra missing from the spectrum causing black lines on the continuous spectrum. Diffra-When a beam of light passes through a narrow gap and ction spreads out. An entity behaving with both particle and wave-like Wavebehaviour. Light has a relationship between wavelength Particle Duality and momentum: DeBroglie's Wavelength: $\lambda = h/mv$ Electron When electrons are accelerated and sent through a Diffragraphite crystal, they pass through the spaces between the atoms producing a diffraction pattern ction Waves Reflection When a wave is bounced back when hitting a boundary Refraction When a wave changes direction as it enters a different boundary medium. The change in direction is as a result of the wave changing speed in the new medium Diffraction When a wave spreads out as it passes through a gap or around a obstacle. Displa-The distance a wave has moved from its undisturbed

 Displation intendistance a wave has moved from its undistance a wave has moved from its un

C

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 14 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Waves (cont)
Period (T/s)	The time taken for a whole wave cycle. T = 1/f
Frequency (f/Hz)	The number of whole waves per second, passing a given point. f = 1/T
Phase	A measurement of the position if a certain point along the wave cycle
Phase Difference	The amount by which one wave differs from another
Wave Speed	$c = f\lambda$
Transverse Wave	The displacement of the particles/field is at a right angle to the direction of energy transfer. e.g. a spring shaking up and down as displacement 1 and energy transfer is \rightarrow
Longit- udinal Wave	The displacement of the particles/fields is along the line of energy transfer
Polari- sation	A wave passing through a filter resulting in a polarised wave that oscillates in one direction only. 2 polarising filters at right angles blocks all light as it blocks both directions. Polarising filters are common sunglasses
Glare Reduction	Polarising filters reduces the amount of reflected light therefore reducing the intensity of the light on your eyes
TV Signals	TV signals are polarised by the rod orientation on the transmitting aerial. If the rods are lined up, you receive a good signal.
Superp- ostion	When 2 waves pass through each, at the instance where the wave cross, the displacement is combined, then each wave continues.

Waves (con	t)
Constr- uctive Interf- erence	When 2 waves meet and their displacements are in the same direction, the displacements combine to give a bigger one.
Destru- ctive Interf- erence	When 2 waves meet and their displacement is in opposite directions, they cancel out 'destroying' the displacement. The displacement of the combined wave is the sum of the individual displacements.
Exactly Out of Phase	When 2 points on a wave are a odd multiple of $180^{\circ}/\Pi$ apart.
In phase	When the phase difference of 2 points is 0 or a multiple of $360^{\circ}/2\Pi$.
Stationary Wave	The superposition of 2 progressive waves with the same frequency/wavelength and amplitude moving in opposite directions
Node	A point on a stationary wave where no movement occurs - zero amplitude. There is total destructive interference.
Antinode	Points on a stationary wave with maximum amplitude - constructive interference
Resonant Frequency	When the stationary wave produced has an exact number of half-wavelengths
First Harmonic	When the stationary wave is at its lowest possible frequency - a single loop with one antinode and a node at each end. To find the freq of the nth harmonic, multiply the 1st harmonics freq. by n. $f = 1/2I \times sqrt(T/\mu)$ where μ is the mass per unit length, T is the tension in the string and I is the length of the vibrating string.
Second Harmonic	Twice the frequency of the 1st harmonic. With 2 loops, 2 antinodes and 3 nodes (one in the center)

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 15 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Waves (cont)		Waves (cont)		
Amount of Diffraction	When a wave is passed through a narrow gap. Gap > Wavelength ➔ No diffraction Gap = n x Wavelength ➔ Minimal Diffraction Gap = Wavelength ➔ Maximum Diffraction	Diffraction Grating	Lots of equally spaced slits very close together, produces a sharp interference pattern, therefore allowing more accurate measurements. The formula relates the distance between slits (d/m), the angle to th	
Monoch- romatic Light	Light of a signal wavelength/frequency and therefore a single colour. Best for producing clear diffraction patterns.		normal (θ)°), the wavelength (λ /m) and the order of maximum(n) dSin(θ) = n λ	
White Light	t of light different amounts. The result is a		The order of maximum is the number of bright spots away from the central spot (which has order 0)	
Diffraction		A measure of how optically dense a material is - the more optically dense, the higher refractive index.		
Two- Souce Interf- erence	When waves from 2 sources interfere to produce a pattern. In order to get a clear pattern, the sources must be monochromatic and coherant		n = c/c_s where c is the speed of light and c_s is the speed of light in the material.	
Coherancy	y If the waves produce have the same wavelength/freq- uency and have a fixed phase difference.	Common Refractive Indexes Vacuum = 1 Glass ≈ 1.5		
Double-Slit Formula	Young's double-slit formula relate a waves fringe spacing (w/m), its wavelength(λ /m), the slit separatio- n(s/m) and the distance from the screen(D/m) into a single formula w = λ D/s		Water ≈ 1.33	
			At a boundary: $1n2 = c1/c2 = n2 / n1$ The relative refractive index from material 1 to material 2. Note when using the refractive indexes of the materials its 2/1 rather than 1/2 with the speeds.	
		Snells Law	$n_1Sin(\theta_1) = n_2Sin(\theta_2)$ When a ray of light travels from one refractive medium to another.	
		Critical Angle	The angle of incidence at which the angle of refraction = 90° i.e. Sin(θ crit) = n2/n1 where n1>n2	
		Total Internal Reflection	When all light is completely reflected back into a medium at a boundary with another medium instead of being refracted. Occurs when $\theta_1 > \theta_{crit}$	

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 16 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Waves (cont)	Nuclear (co
Optical Fibre	A very thin flexible tube of glass/plastic fibre in which light signals are carried across long distances and around corners by applying TIR. The fibres are surrounded by a cladding with a high refractive index and a core of a lower refractive index. The light is refracted where the mediums meet and travels along the fibre.	Distance of Closest Approach Electron Diffraction Nuclear
Signal Absorbtion Signal Dispersion	When some of the signals energy is absorbed by the material of the fibre. The final amplitude is reduced. When the final pulse is broader than expected, which can cause information loss as it may overlap with another signal.	Radius Alpha Decay (α)
Modal Dispersion Material	Light entering at different angles and taking different paths, resulting in signals arriving in the wrong order → Single-mode fibre is used to prevent this - light is only allowed to follow a very narrow path. Different amounts of dispersion depending on wavele-	
Dispersion Nuclear	ngth. → Monochromatic light prevents this.	Beta Decay(β^±)
Rutherford Scattering	An experiment that proved the current model of the atom → that it is mostly empty space. Rutherford set up an experiment, with an alpha emitter pointed at gold foil. He observed the deflection of the particles and it showed that atoms have a concentrated mass at the centre and are mostly empty space, which disproved the plum-pudding model which was	
	accepted previously. It showed that: • Atoms = mostly empty space • Nucleus has a large positive charge, as some of the	Gamma Decay(γ)

- +ve charged alpha particles are repelled and deflected
- Nucleus must be tiny due to few particles being
- deflected by an angle > 90°

By OllieC (OllieC)

cheatography.com/Olliec/

Mass must be concentrated in the nucleus

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 17 of 21.

Nuclear (con	t)
Distance of Closest Approach	$E_k = E_{elec} = Q_{nucleus}q_{alpha}/4\pi\epsilon_0 r$ where r is the distance of closest approach
Electron Diffraction Nuclear Radius	λ ≈hc/E where the first minimum occurs at: sinθ ≈ 1.22λ/2R R = R0A ^{1/3}
Alpha Decay (α)	Charge(rel): +2 Mass(u): 4 Penetration: low Ionising: high Speed: slow Affected by mag. field: y Stopped by: paper/~10cm air Used for: Smoke alarms ➔ if the particles cant reach
	the detector, the smoke must be stopping them
Beta Decay(β^±)	Charge(rel): ±1 Mass(u): n/a Penetration: mid Ionising: weak Speed: fast Affected by mag. field: y Stopped by: ~3mm of aluminium Used for: PET Scanners, In production of metals ➔ the levels penetrating through the metal can be used to control the thickness.
Gamma Decay(γ)	Charge(rel): 0 Mass(u): 0 Penetration: low Ionising: very weak Speed: c (speed of light) Affected by mag. field: n Stopped by: several cm of lead. Used for: PET Scanners → produced through annihi- lation, cancer treatment.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Nuclear (cont)		Nuclear (cont)		
Background	The low level of radiation that always exists. Must be	Number of	$N = N_0 e^{-\lambda t}$	
Radiation Sources of Background Rad.	 taken into account when measuring radiation. The Air → Radioactive radon gas released from rocks Ground/Buildings → Nearly all rock contains radioactive materials 	unstable Nuclei (N)	where N ₀ is the original number of the unstable nuclei N = nNA where n is the number of moles and NA is Avogadro's constant	
	 Cosmic Radiation → nuclear radiation from particle collisions due to cosmic rays Living things → living things are made of carbon, some of which is radioactive carbon-14 	Half-Life (T1/2)	The average time the isotope takes for the number of nuclei to halve. $T1/2 = ln2/\lambda$ (Derived from N = N0e ^{-λt})	
Intensity	 Man-Made → Radiation from industrial/medical sources I = k/x² Intensity (Wm⁻²) = constant of proportionality (W)/distance from source (m) 	Uses of Radiation	 Carbon Dating Using the amount of C-14 left in the organic material. Problems are that the material may have been contaminated, high background count, uncertainty in c-14 in the past and sample size may be too small 	
Radioactive Decay	It both spontaneous and random.		 Medical Diagnosis Tracers that emit radiation to track things in the body 	
	Spontaneous: Decay is not affected by external factors Random: It cannot be predicted when the next decay occurs	Instability	Nuclei are unstable when: • Too many/not enough neutrons • Too many nucleons • Too much energy	
Decay Constant	The probability of a specific nucleus decaying per unit time. It is a measure of how quickly a isotope will decay.		If they nuclei lies on the N=Z line they are generally	
Activity (Bq)	The number of nuclei that will decay each second. A = λN		stable. If they lie above, they undergo β^- decay, if they lie below, the undergo β^+ decay. If they have a Z number of over ~82 (Protons) they undergo α decay.	
	where λ is the decay constant, and N is the number of unstable nuclei in the sample It can also be written as:	Mass Defect	The mass of a nucleus is less than the mass of its constituents. This energy difference is the mass defect and is lost to energy as $E = mc^2$, energy and mass are equivalent.	
	$\Delta N/\Delta t = -\lambda N$ Energy would be the energy required	If you were to pull a nucleus apart, this binding energy would be the energy required to do so, equal to the energy released when the nucleus formed.		
	A = $A_0 e^{-\lambda t}$ A ₀ is the activity at t=0			

By **OllieC** (OllieC) cheatography.com/Olliec/ Published 3rd June, 2017. Last updated 3rd June, 2017. Page 18 of 21.

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Nuclear (cont)		Nuclear (c	ont)
Average Binding Energy Nuclear Fission Nuclear Fusion	Average Binding energy per nucleon Energy/Nucleon number When large unstable nuclei randomly more stable nuclei. Energy is release nuclei have a higher avg. binding en When 2 smaller nuclei combine to fo lot of energy is released because the nucleus has a higher avg. binding er nuclei are light enough). This is the e stars burning	y split into smaller ed as the smaller ergy per nucleon orm a larger nuclei. A e new heavier hergy (if the 2 original	Nuclear Fission Reactors	 Control Rods → Usually made of carbon, they are lowered and raised to control the rate of fission. The amount of fuel required to produce one fission per fission is the critical mass. Any less (sub-critical) then the reactor ould go into meltdown, which is why control rods are used. Moderator → Fuel rods are placed in the moderator, this slows down/absorbs neutrons to control the rate. The choice of moderator needs to slow down the neutrons enough to slow down neutrons enough to keep the rate of fission steady. It slows down neutrons through elastic collisions, a moderator with a similar nucleon-mass to the neutrons. Coolant → is sent around the reactor to remove heat produced by the fissio. The material is either liquid or gas at room temp. Often it is the same water (heavy-water) as the moderator and can be used to make steam and turn turbines. Shielding → Reactors are surrounded by thick concrete, which shields and protects from radiation escaping and anyone working there. Emergency Shut-down → All reactors have an emergency shutdown where the control rods are completely lowered into the reactor, thus absorbing all the neutrons produced and slowing the reaction down as quickly as possible. Waste → Unused uranium only produces α so can be easily contained. Spent uranium however emit β & γ radiation. Once removed from the reactor they are cooled and ten stored in sealed containers until the activity is at a low enough level.
С	By OllieC (OllieC) cheatography.com/Olliec/	Published 3rd June, 201 Last updated 3rd June, Page 19 of 21.		Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

A-Level Physics Key Terms Cheat Sheet by ollieC (ollieC) via cheatography.com/38321/cs/11952/

Further Mec	hanics		Further Med	chanics (cont)	
Radian	Objects in circular motion travel through angles, mos measured in radians. Rads to Deg: Angle in deg x π/180	ily	Accele- ration (a)	Is the gradient of the velocity time graph. Its maximum value is $\omega^2 A$ a = $\omega^2 x$	
Angular Speed	The angle an object rotates through per second. $\omega = \theta/t = v/r = 2\pi/T = 2\pi f$		Mass-S- pring	A mass on a spring is a simple harmonic oscillator . When the mass is pulled/pushed from the equilibrium	
Frequency	The number of revolutions per second. f = 1/T		System	position, there is a force directed back towards the equilibrium position.	
Time Period	The time taken for a complete revolution.			F = $k\Delta L$ where k is the spring constant and ΔL is the displacement.	
Centri- petal Accele- ration	Objects travelling in a circle are accelerating as their velocity is changing constantly. The acceleration is always acting towards the centre of the circle. $a = v^2/r = \omega^2 r$			The Time period for a M-S System is given by: T = $2\pi x \operatorname{sqrt}(m/k)$	
Centri- petal Force	Is the resolved force which is always directed toward the centre of the circle. $F = mv^2/r = m\omega^2 r$	6	Pendulum	A pendulum is an example of a Simple Harmonic Oscill- ator. The time period for a pendulum is given by:	
Simple	An object undergoing SHM is oscillating to and fro,			$T = 2\pi x \operatorname{sqrt}(I/g)$	
Harmonic Motion	either side of an equilibrium position. It is defined as An oscillation in which the acceleration		Free Vibration	Free vibrations involve no transfer of energy to/from the surroundings. If a mass-spring system is stretched, it will oscillate at its natural frequency f_n .	
	of an object is directly proportional to its displacement which is <i>always</i> directed towards the equilibrium position	t,	Forced Vibration	Forced Vibration occurs when there is an external driving force. A system can be forced to vibrate by a periodic external force. This is called the driving	
Displa- cement (x)	Displacement varies as a cosine/sine wave with a maximum value of A (Amplitude)			frequency, fd.	
	$x = A\cos(\omega t)$			fd << fn → Both are in phase	
Velocity (v)	Is the gradient of the displacement time graph. Its maximum value is $\boldsymbol{\omega} \boldsymbol{A}$			fd >> fn \rightarrow The oscillator will not be able to keep up and will end up out of control. i.e. completely out of phase.	
	$v = \pm \omega x \operatorname{sqrt}(A^2 x^2)$ $v_{\max} = \omega A$				
C	By OllieC (OllieC)Published 3rd Jcheatography.com/Olliec/Last updated 3r			Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!	

Page 20 of 21.

http://crosswordcheats.com

Further Mech	nanics (cont)		
Resonance	As $fd \rightarrow fn$, the system gains more from the driving force, thus the arr increases. The system is now con resonating. At resonance, the pha between the driver and the oscilla	nplitude rapidly isidered to be ise difference	
Damping	 Damping Any oscillating system loses energy to → damping. System are also delibera stop them oscillating or minimise resore Light Damping → Take a long time for stop, the amplitude is decreased slowledge. 		
	 ent-Time Graph: sharp peak. Heavy Damping → The amplitude decreases rapidly, and oscillation takes much less time to stop.Displacement-Time Graph: flat peak. Critical Damping → Oscillation is stopped in the shortest amount of time possible. Over Damping → Systems with even heavier damping, they take longer to reach equilibrium than a critically damped system. 		
	By OllieC (OllieC)	Published 3rd June,	

By **OllieC** (OllieC) cheatography.com/Olliec/

Published 3rd June, 2017. Last updated 3rd June, 2017. Page 21 of 21.