

MATH140 Final Cheat Sheet

by 02gguzman via cheatography.com/129999/cs/25725/

Limits

 $\begin{tabular}{ll} \hline 2 & Precise Definition of a Limit Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write$ $\lim_{x \to a} f(x) = L$

if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that

 $\text{if} \quad 0 < |x - a| < \delta \qquad \text{then} \qquad |f(x) - L| < \varepsilon$

One Sided Limits

Show that the side you are evaluating exists

If it is defined @ value plug it in

First/ Second Derivative Tests	
First	Second
1. Take derivative and find <i>c.v.</i>	1. Take and find <i>c.v.</i>
2. Use a sign chart	2. Use a sign chart
+ is inc. / - is dec.	+ is CC up / - is CC down
shows extrema	shows inflection points
* test endpoints	*if checking extrema

Area Between Curves

$$A = \int\limits_{a}^{b} (f(x) - g(x)) dx$$

$$A = \int\limits_{a}^{b} (top - bottom) dx$$
 Calcworkshop.com

Derivative of an Integral

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt = f(h(x)) h'(x) - f(g(x)) g'(x)$$

Limit Definition of Derivatives

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x \to a}$$

Power Rule

$$\frac{d}{dx}x^n=n\cdot x^{n-1}$$

Product/Quotient Rule

Product Each
$$\begin{split} \frac{d}{dt} \left[f(t) g(t) \right] &= f(t) g'(t) + g(t) f'(t) \\ \text{Quotient Back} \\ \frac{d}{dt} \left[\frac{f(t)}{g(t)} \right] &= \frac{g(t) f'(t) - f(t) g'(t)}{\left[g(t) \right]^2} \end{split}$$

Chain Rule

 $\frac{d}{dx}\left[\left(f(x)\right)^{n}\right] = n\left(f(x)\right)^{n-1} \cdot f'(x)$ $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$

Intermediate Value Theorem

IF f is a function that is continuous over the interval [a,b] and m is some number between f(a) and f(b), THEN there exists a number c between and b such that f(c)=m.

Mean Value Theorem

 $f'(c) = \frac{f(b) - f(a)}{b - a}$

Rolle's Theorem

- [a,b] is continuous - (a,b) is differentiable - f(a)=f(b) THEN: f'(c) = 0

Newton Raphson Method

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}$$

Related Rates

- 1. Draw a picture and label
- 2. Use formula for area/volume of shape
- 3. Take derivative of formula
- 4. Plug in values to each formula as
- *One variable will NOT have a rate of change (ex. ladder)

By 02gguzman

cheatography.com/02gguzman/

Published 16th December, 2020. Last updated 16th December, 2020. Page 1 of 1.

Sponsored by Readable.com Measure your website readability! https://readable.com